These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 29711350)
1. The Stability of the Oxidation State +4 in Group 14 Compounds from Carbon to Element 114. Seth M; Faegri K; Schwerdtfeger P Angew Chem Int Ed Engl; 1998 Oct; 37(18):2493-2496. PubMed ID: 29711350 [TBL] [Abstract][Full Text] [Related]
2. Relativistic effects for the reaction Sg + 6 CO → Sg(CO)6: Prediction of the mean bond energy, atomization energy, and existence of the first organometallic transactinide superheavy hexacarbonyl Sg(CO)6. Malli GL J Chem Phys; 2015 Feb; 142(6):064311. PubMed ID: 25681910 [TBL] [Abstract][Full Text] [Related]
3. Dissociation energy of ekaplutonium fluoride E126F: the first diatomic with molecular spinors consisting of g atomic spinors. Malli GL J Chem Phys; 2006 Feb; 124(7):71102. PubMed ID: 16497023 [TBL] [Abstract][Full Text] [Related]
4. Relativistic effects on the electronic structure and volatility of group-8 tetroxides MO4, where M=Ru, Os, and element 108, Hs. Pershina V; Bastug T; Fricke B J Chem Phys; 2005 Mar; 122(12):124301. PubMed ID: 15836372 [TBL] [Abstract][Full Text] [Related]
5. The stability of gold iodides in the gas phase and the solid state. Söhnel T; Brown R; Kloo L; Schwerdtfeger P Chemistry; 2001 Jul; 7(14):3167-73. PubMed ID: 11495443 [TBL] [Abstract][Full Text] [Related]
6. The transuranic elements and the island of stability. Chapman K Philos Trans A Math Phys Eng Sci; 2020 Sep; 378(2180):20190535. PubMed ID: 32811362 [TBL] [Abstract][Full Text] [Related]
7. Atomic properties of element 113 and its adsorption on inert surfaces from ab initio Dirac-Coulomb calculations. Pershina V; Borschevsky A; Eliav E; Kaldor U J Phys Chem A; 2008 Dec; 112(51):13712-6. PubMed ID: 19049424 [TBL] [Abstract][Full Text] [Related]
8. Spin-Orbit Effects, VSEPR Theory, and the Electronic Structures of Heavy and Superheavy Group IVA Hydrides and Group VIIIA Tetrafluorides. A Partial Role Reversal for Elements 114 and 118. Nash CS; Bursten BE J Phys Chem A; 1999 Jan; 103(3):402-410. PubMed ID: 27676357 [TBL] [Abstract][Full Text] [Related]
9. Chemistry of the superheavy elements. Schädel M Philos Trans A Math Phys Eng Sci; 2015 Mar; 373(2037):. PubMed ID: 25666065 [TBL] [Abstract][Full Text] [Related]
10. Accurate relativistic energy-consistent pseudopotentials for the superheavy elements 111 to 118 including quantum electrodynamic effects. Hangele T; Dolg M; Hanrath M; Cao X; Schwerdtfeger P J Chem Phys; 2012 Jun; 136(21):214105. PubMed ID: 22697528 [TBL] [Abstract][Full Text] [Related]
11. Relativistic energy-consistent pseudopotentials for superheavy elements 119 and 120 including quantum electrodynamic effects. Hangele T; Dolg M; Schwerdtfeger P J Chem Phys; 2013 May; 138(17):174113. PubMed ID: 23656120 [TBL] [Abstract][Full Text] [Related]
12. Nuclear isomers in superheavy elements as stepping stones towards the island of stability. Herzberg RD; Greenlees PT; Butler PA; Jones GD; Venhart M; Darby IG; Eeckhaudt S; Eskola K; Grahn T; Gray-Jones C; Hessberger FP; Jones P; Julin R; Juutinen S; Ketelhut S; Korten W; Leino M; Leppänen AP; Moon S; Nyman M; Page RD; Pakarinen J; Pritchard A; Rahkila P; Sarén J; Scholey C; Steer A; Sun Y; Theisen Ch; Uusitalo J Nature; 2006 Aug; 442(7105):896-9. PubMed ID: 16929293 [TBL] [Abstract][Full Text] [Related]
13. Measurement of the first ionization potential of lawrencium, element 103. Sato TK; Asai M; Borschevsky A; Stora T; Sato N; Kaneya Y; Tsukada K; Düllmann ChE; Eberhardt K; Eliav E; Ichikawa S; Kaldor U; Kratz JV; Miyashita S; Nagame Y; Ooe K; Osa A; Renisch D; Runke J; Schädel M; Thörle-Pospiech P; Toyoshima A; Trautmann N Nature; 2015 Apr; 520(7546):209-11. PubMed ID: 25855457 [TBL] [Abstract][Full Text] [Related]
14. Actinide-silicon multiradical bonding: infrared spectra and electronic structures of the Si(μ-X)AnF3 (An = Th, U; X = H, F) molecules. Hu HS; Wei F; Wang X; Andrews L; Li J J Am Chem Soc; 2014 Jan; 136(4):1427-37. PubMed ID: 24383992 [TBL] [Abstract][Full Text] [Related]
15. Chemistry of superheavy elements. Schädel M Angew Chem Int Ed Engl; 2006 Jan; 45(3):368-401. PubMed ID: 16365916 [TBL] [Abstract][Full Text] [Related]
16. Ab initio calculations for the Zn 2s and 2p core level binding energies in Zn oxo compounds and ZnO. Rössler N; Kotsis K; Staemmler V Phys Chem Chem Phys; 2006 Feb; 8(6):697-706. PubMed ID: 16482309 [TBL] [Abstract][Full Text] [Related]
17. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007). Hafner J J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862 [TBL] [Abstract][Full Text] [Related]
18. Kinetic and thermodynamic stability of the group 13 trihydrides. Vest B; Klinkhammer K; Thierfelder C; Lein M; Schwerdtfeger P Inorg Chem; 2009 Aug; 48(16):7953-61. PubMed ID: 19601590 [TBL] [Abstract][Full Text] [Related]
19. (129)Xe chemical shift by the perturbational relativistic method: xenon fluorides. Lantto P; Vaara J J Chem Phys; 2007 Aug; 127(8):084312. PubMed ID: 17764253 [TBL] [Abstract][Full Text] [Related]
20. Heavy-Element Reactions Database (HERDB): Relativistic ab Initio Geometries and Energies for Actinide Compounds. Andreadi N; Mitrofanov A; Matveev P; Volkova A; Kalmykov S Inorg Chem; 2020 Sep; 59(18):13383-13389. PubMed ID: 32876441 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]