These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 29712040)

  • 1. A Large Dendritic Multiporphyrin Array as a Mimic of the Bacterial Light-Harvesting Antenna Complex: Molecular Design of an Efficient Energy Funnel for Visible Photons.
    Choi MS; Aida T; Yamazaki T; Yamazaki I
    Angew Chem Int Ed Engl; 2001 Sep; 40(17):3194-3198. PubMed ID: 29712040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dendritic multiporphyrin arrays as light-harvesting antennae: effects of generation number and morphology on intramolecular energy transfer.
    Choi MS; Aida T; Yamazaki T; Yamazaki I
    Chemistry; 2002 Jun; 8(12):2668-78. PubMed ID: 12391643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationship between incoherent excitation energy migration processes and molecular structures in zinc(II) porphyrin dendrimers.
    Cho S; Li WS; Yoon MC; Ahn TK; Jiang DL; Kim J; Aida T; Kim D
    Chemistry; 2006 Oct; 12(29):7576-84. PubMed ID: 16927274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioinspired molecular design of light-harvesting multiporphyrin arrays.
    Choi MS; Yamazaki T; Yamazaki I; Aida T
    Angew Chem Int Ed Engl; 2004 Jan; 43(2):150-8. PubMed ID: 14695602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discrete cyclic porphyrin arrays as artificial light-harvesting antenna.
    Aratani N; Kim D; Osuka A
    Acc Chem Res; 2009 Dec; 42(12):1922-34. PubMed ID: 19842697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural induced control of energy transfer within Zn(II)-porphyrin dendrimers.
    Larsen J; Brüggemann B; Khoury T; Sly J; Crossley MJ; Sundström V; Akesson E
    J Phys Chem A; 2007 Oct; 111(42):10589-97. PubMed ID: 17914756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light-harvesting and ultrafast energy migration in porphyrin-based metal-organic frameworks.
    Son HJ; Jin S; Patwardhan S; Wezenberg SJ; Jeong NC; So M; Wilmer CE; Sarjeant AA; Schatz GC; Snurr RQ; Farha OK; Wiederrecht GP; Hupp JT
    J Am Chem Soc; 2013 Jan; 135(2):862-9. PubMed ID: 23249338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excitation energy transfer in multiporphyrin arrays with cyclic architectures: towards artificial light-harvesting antenna complexes.
    Yang J; Yoon MC; Yoo H; Kim P; Kim D
    Chem Soc Rev; 2012 Jul; 41(14):4808-26. PubMed ID: 22659941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy transfer followed by electron transfer in a supramolecular triad composed of boron dipyrrin, zinc porphyrin, and fullerene: a model for the photosynthetic antenna-reaction center complex.
    D'Souza F; Smith PM; Zandler ME; McCarty AL; Itou M; Araki Y; Ito O
    J Am Chem Soc; 2004 Jun; 126(25):7898-907. PubMed ID: 15212538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-lived, charge-shift states in heterometallic, porphyrin-based dendrimers formed via click chemistry.
    Le Pleux L; Pellegrin Y; Blart E; Odobel F; Harriman A
    J Phys Chem A; 2011 May; 115(20):5069-80. PubMed ID: 21534563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dendritic porphyrin-fullerene conjugates: efficient light-harvesting and charge-transfer events.
    Schlundt S; Kuzmanich G; Spänig F; de Miguel Rojas G; Kovacs C; Garcia-Garibay MA; Guldi DM; Hirsch A
    Chemistry; 2009 Nov; 15(45):12223-33. PubMed ID: 19882598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Giant multiporphyrin arrays as artificial light-harvesting antennas.
    Imahori H
    J Phys Chem B; 2004 May; 108(20):6130-43. PubMed ID: 18950092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic energy transfer in a multiporphyrin-based molecular box.
    Prodi A; Chiorboli C; Scandola F; Iengo E; Alessio E
    Chemphyschem; 2006 Jul; 7(7):1514-9. PubMed ID: 16739160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Guest-Induced Modulation of the Energy Transfer Process in Porphyrin-Based Artificial Light Harvesting Dendrimers.
    Yim D; Sung J; Kim S; Oh J; Yoon H; Sung YM; Kim D; Jang WD
    J Am Chem Soc; 2017 Jan; 139(2):993-1002. PubMed ID: 27977172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Guest-induced photophysical property switching of artificial light-harvesting dendrimers.
    Jeong YH; Son M; Yoon H; Kim P; Lee DH; Kim D; Jang WD
    Angew Chem Int Ed Engl; 2014 Jul; 53(27):6925-8. PubMed ID: 24828751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A pentaporphyrin as a switching device activated by proton and redox stimuli.
    Ceroni P; Bergamini G; Aubert N; Troiani V; Solladié N
    Chemphyschem; 2005 Oct; 6(10):2120-8. PubMed ID: 16208754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antenna effects of aromatic dendrons and their luminescence applications.
    Kawa M
    Top Curr Chem; 2003; 228():193-204. PubMed ID: 21132485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unusual photoinduced electron transfer from a zinc porphyrin to a tetrapyridyl free-base porphyrin in a noncovalent multiporphyrin array.
    Ventura B; Flamigni L; Beyler M; Heitz V; Sauvage JP
    Chemistry; 2010 Aug; 16(29):8748-56. PubMed ID: 20589848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bending a photonic wire into a ring.
    Gotfredsen H; Deng JR; Van Raden JM; Righetto M; Hergenhahn J; Clarke M; Bellamy-Carter A; Hart J; O'Shea J; Claridge TDW; Duarte F; Saywell A; Herz LM; Anderson HL
    Nat Chem; 2022 Dec; 14(12):1436-1442. PubMed ID: 36253501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic energy harvesting multi BODIPY-zinc porphyrin dyads accommodating fullerene as photosynthetic composite of antenna-reaction center.
    Maligaspe E; Kumpulainen T; Subbaiyan NK; Zandler ME; Lemmetyinen H; Tkachenko NV; D'Souza F
    Phys Chem Chem Phys; 2010 Jul; 12(27):7434-44. PubMed ID: 20544099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.