BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 29712167)

  • 1. Chiral Molecular Recognition on Formation of a Metalloanthocyanin: A Supramolecular Metal Complex Pigment from Blue Flowers of Salvia patens.
    Kondo T; Oyama KI; Yoshida K
    Angew Chem Int Ed Engl; 2001 Mar; 40(5):894-897. PubMed ID: 29712167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blue flower coloration of Salvia macrophylla by the metalloanthocyanin, protodelphin.
    Yoshida K; Teppabut Y; Sugita C; Oyama KI
    Biosci Biotechnol Biochem; 2022 Sep; 86(10):1349-1352. PubMed ID: 35983624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chiral Molecular Recognition on Formation of a Metalloanthocyanin: A Supramolecular Metal Complex Pigment from Blue Flowers of Salvia patens We thank Mr. Y. Maeda (Chemical Instrument Center, Nagoya University) for help with molecular modeling, and the Ministry of Education, Science, Sports, and Culture of Japan (COE Research No. 07CE2004) for financial support.
    Kondo T; Oyama Ki KI; Yoshida K
    Angew Chem Int Ed Engl; 2001 Mar; 40(5):894-897. PubMed ID: 11241638
    [No Abstract]   [Full Text] [Related]  

  • 4. Cyanosalvianin, a supramolecular blue metalloanthocyanin, from petals of Salvia uliginosa.
    Mori M; Kondo T; Yoshida K
    Phytochemistry; 2008 Dec; 69(18):3151-8. PubMed ID: 18466933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and Characterization of Novel Nemophila menziesii Flavone Glucosyltransferases that Catalyze Biosynthesis of Flavone 7,4'-O-Diglucoside, a Key Component of Blue Metalloanthocyanins.
    Okitsu N; Matsui K; Horikawa M; Sugahara K; Tanaka Y
    Plant Cell Physiol; 2018 Oct; 59(10):2075-2085. PubMed ID: 29986079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blue metal complex pigments involved in blue flower color.
    Takeda K
    Proc Jpn Acad Ser B Phys Biol Sci; 2006 May; 82(4):142-54. PubMed ID: 25792777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal ion modulated organization and function of the Langmuir-Blodgett films of amphiphilic diacetylene: photopolymerization, thermochromism, and supramolecular chirality.
    Huang X; Jiang S; Liu M
    J Phys Chem B; 2005 Jan; 109(1):114-9. PubMed ID: 16850992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The first total synthesis of apigenin 7-O-β-D-cellobiosyl-4'-O-β-D-glucopyranoside isolated from Salvia uliginosa.
    Sonmez F; Nebioglu M; Besoluk S; Arslan M; Zengin M; Kucukislamoglu M
    Nat Prod Res; 2013 Apr; 27(7):630-7. PubMed ID: 22616559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-Assembly of Hierarchical Chiral Nanostructures Based on Metal-Benzimidazole Interactions: Chiral Nanofibers, Nanotubes, and Microtubular Flowers.
    Zhou X; Jin Q; Zhang L; Shen Z; Jiang L; Liu M
    Small; 2016 Sep; 12(34):4743-52. PubMed ID: 27248367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The identification of a vacuolar iron transporter involved in the blue coloration of cornflower petals.
    Yoshida K; Negishi T
    Phytochemistry; 2013 Oct; 94():60-7. PubMed ID: 23838627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supramolecular Chirality of the Two-Component Supramolecular Copolymer Gels: Who Determines the Handedness?
    Liu Y; Chen C; Wang T; Liu M
    Langmuir; 2016 Jan; 32(1):322-8. PubMed ID: 26651413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-assembly of folic acid derivatives: induction of supramolecular chirality by hierarchical chiral structures.
    Kamikawa Y; Nishii M; Kato T
    Chemistry; 2004 Nov; 10(23):5942-51. PubMed ID: 15532055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gelation induced supramolecular chirality: chirality transfer, amplification and application.
    Duan P; Cao H; Zhang L; Liu M
    Soft Matter; 2014 Aug; 10(30):5428-48. PubMed ID: 24975350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular basis for water-promoted supramolecular chirality inversion in helical rosette nanotubes.
    Johnson RS; Yamazaki T; Kovalenko A; Fenniri H
    J Am Chem Soc; 2007 May; 129(17):5735-43. PubMed ID: 17417852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enantioselective Recognition by Chiral Supramolecular Gels.
    Zhang L; Jin Q; Liu M
    Chem Asian J; 2016 Oct; 11(19):2642-2649. PubMed ID: 27258582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular Dynamics Approach for Predicting Helical Twisting Powers of Metal Complex Dopants in Nematic Solvents.
    Watanabe G; Yoshida J
    J Phys Chem B; 2016 Jul; 120(27):6858-64. PubMed ID: 27333445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Significant Enhancement of the Chiral Correlation Length in Nematic Liquid Crystals by Gold Nanoparticle Surfaces Featuring Axially Chiral Binaphthyl Ligands.
    Mori T; Sharma A; Hegmann T
    ACS Nano; 2016 Jan; 10(1):1552-64. PubMed ID: 26735843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection and amplification of chirality by helical polymers.
    Yashima E; Maeda K; Nishimura T
    Chemistry; 2004 Jan; 10(1):42-51. PubMed ID: 14695548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chirality transfer in 1D self-assemblies: influence of H-bonding vs metal coordination between dicyano[7]helicene enantiomers.
    Shchyrba A; Nguyen MT; Wäckerlin C; Martens S; Nowakowska S; Ivas T; Roose J; Nijs T; Boz S; Schär M; Stöhr M; Pignedoli CA; Thilgen C; Diederich F; Passerone D; Jung TA
    J Am Chem Soc; 2013 Oct; 135(41):15270-3. PubMed ID: 24090281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chiral metallocycles: rational synthesis and novel applications.
    Lee SJ; Lin W
    Acc Chem Res; 2008 Apr; 41(4):521-37. PubMed ID: 18271561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.