These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 29712236)

  • 1. Gold Nanoparticles with Covalently Attached Polymer Chains.
    Nuß S; Böttcher H; Wurm H; Hallensleben ML
    Angew Chem Int Ed Engl; 2001 Nov; 40(21):4016-4018. PubMed ID: 29712236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Smart core/shell nanocomposites: intelligent polymers modified gold nanoparticles.
    Li D; He Q; Li J
    Adv Colloid Interface Sci; 2009 Jul; 149(1-2):28-38. PubMed ID: 19201389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of contrast agents for magnetic resonance imaging from polymer-brush-afforded iron oxide magnetic nanoparticles prepared by surface-initiated living radical polymerization.
    Ohno K; Mori C; Akashi T; Yoshida S; Tago Y; Tsujii Y; Tabata Y
    Biomacromolecules; 2013 Oct; 14(10):3453-62. PubMed ID: 23957585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of silica-polymer core-shell nanoparticles by reversible addition-fragmentation chain transfer polymerization.
    Moraes J; Ohno K; Maschmeyer T; Perrier S
    Chem Commun (Camb); 2013 Oct; 49(80):9077-88. PubMed ID: 23999877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and characterization of monodispersed core-shell spherical colloids with movable cores.
    Kamata K; Lu Y; Xia Y
    J Am Chem Soc; 2003 Mar; 125(9):2384-5. PubMed ID: 12603113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-pot synthesis of robust core/shell gold nanoparticles.
    Dong H; Zhu M; Yoon JA; Gao H; Jin R; Matyjaszewski K
    J Am Chem Soc; 2008 Oct; 130(39):12852-3. PubMed ID: 18763773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colloidal interactions of inorganic nanoparticles grafted with zwitterionic polymer brushes and gels by surface-mediated seeded polymerization.
    An S; Choi SK; Cho JW; Kim HT; Kim JW
    Macromol Rapid Commun; 2014 Aug; 35(15):1356-61. PubMed ID: 24840728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organophilic Boehmite nanoparticles by ATRP methacrylates polymerization: synthesis, characterization and dispersion in polypropylene.
    Coiai S; Passaglia E; Augier S; Narducci P; Ciardelli F
    J Nanosci Nanotechnol; 2008 Apr; 8(4):1803-11. PubMed ID: 18572581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Colloidal stability of zwitterionic polymer-grafted gold nanoparticles in water.
    Durand-Gasselin C; Koerin R; Rieger J; Lequeux N; Sanson N
    J Colloid Interface Sci; 2014 Nov; 434():188-94. PubMed ID: 25203910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Situ Growth of Self-Assembled Protein-Polymer Nanovesicles for Enhanced Intracellular Protein Delivery.
    Liu X; Gao W
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):2023-2028. PubMed ID: 28054762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tandem chain walking polymerization and atom transfer radical polymerization for efficient synthesis of dendritic nanoparticles for bioconjugation.
    Chen G; Huynh D; Felgner PL; Guan Z
    J Am Chem Soc; 2006 Apr; 128(13):4298-302. PubMed ID: 16569005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blood clearance and biodistribution of polymer brush-afforded silica particles prepared by surface-initiated living radical polymerization.
    Ohno K; Akashi T; Tsujii Y; Yamamoto M; Tabata Y
    Biomacromolecules; 2012 Mar; 13(3):927-36. PubMed ID: 22324307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ordered arrays of gold nanostructures from interfacially assembled Au@PNIPAM hybrid nanoparticles.
    Vogel N; Fernández-López C; Pérez-Juste J; Liz-Marzán LM; Landfester K; Weiss CK
    Langmuir; 2012 Jun; 28(24):8985-93. PubMed ID: 22324858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polymer brush covalently attached to OH-functionalized mica surface via surface-initiated ATRP: control of grafting density and polymer chain length.
    Lego B; François M; Skene WG; Giasson S
    Langmuir; 2009 May; 25(9):5313-21. PubMed ID: 19256467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycopolymer-Grafted Polymer Particles for Lectin Recognition.
    Kohri M; Taniguchi T; Kishikawa K
    Methods Mol Biol; 2016; 1367():137-47. PubMed ID: 26537470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Core-shell Au nanoparticle formation with DNA-polymer hybrid coatings using aqueous ATRP.
    Lou X; Wang C; He L
    Biomacromolecules; 2007 May; 8(5):1385-90. PubMed ID: 17465524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanobeads highly loaded with superparamagnetic nanoparticles prepared by emulsification and seeded-emulsion polymerization.
    Paquet C; Pagé L; Kell A; Simard B
    Langmuir; 2010 Apr; 26(8):5388-96. PubMed ID: 20000392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photocatalytic Surface-Initiated Polymerization on TiO2 toward Well-Defined Composite Nanostructures.
    Wang X; Lu Q; Wang X; Joo J; Dahl M; Liu B; Gao C; Yin Y
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):538-46. PubMed ID: 26671186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of protein nano-objects by assembly of polymer-grafted proteins.
    Fukui Y; Sakai D; Fujimoto K
    Colloids Surf B Biointerfaces; 2016 Dec; 148():503-510. PubMed ID: 27686514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integration of organic fluorophores in the surface of polymer-coated colloidal nanoparticles for sensing the local polarity of the environment.
    Amin F; Yushchenko DA; Montenegro JM; Parak WJ
    Chemphyschem; 2012 Mar; 13(4):1030-5. PubMed ID: 22383304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.