These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 29712291)

  • 1. A Synthetic Pore-Mediated Transmembrane Transport of Glutamic Acid.
    Sánchez-Quesada J; Sun Kim H; Ghadiri MR
    Angew Chem Int Ed Engl; 2001 Jul; 40(13):2503-2506. PubMed ID: 29712291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-assembling organic nanotubes with precisely defined, sub-nanometer pores: formation and mass transport characteristics.
    Gong B; Shao Z
    Acc Chem Res; 2013 Dec; 46(12):2856-66. PubMed ID: 23597055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of the amino acid composition of cyclic peptides on their self-assembly in lipid bilayers.
    Danial M; Perrier S; Jolliffe KA
    Org Biomol Chem; 2015 Feb; 13(8):2464-73. PubMed ID: 25566760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthetic ion channels: from pores to biological applications.
    Gokel GW; Negin S
    Acc Chem Res; 2013 Dec; 46(12):2824-33. PubMed ID: 23738778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial transmembrane ion channels from self-assembling peptide nanotubes.
    Ghadiri MR; Granja JR; Buehler LK
    Nature; 1994 May; 369(6478):301-4. PubMed ID: 7514275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics simulations for designing biomimetic pores based on internally functionalized self-assembling α,γ-peptide nanotubes.
    Calvelo M; Vázquez S; García-Fandiño R
    Phys Chem Chem Phys; 2015 Nov; 17(43):28586-601. PubMed ID: 26443433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyclic γ-Peptides With Transmembrane Water Channel Properties.
    Chen J; Li Q; Wu P; Liu J; Wang D; Yuan X; Zheng R; Sun R; Li L
    Front Chem; 2020; 8():368. PubMed ID: 32426330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A minimalistic tetrapeptide amphiphile scaffold for transmembrane pores with a preference for sodium.
    Basak D; Sridhar S; Bera AK; Madhavan N
    Bioorg Med Chem Lett; 2017 Jul; 27(13):2886-2889. PubMed ID: 28487073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cation-Transporting Peptides: Scaffolds for Functionalized Pores?
    Behera H; Ramkumar V; Madhavan N
    Chemistry; 2015 Jul; 21(28):10179-84. PubMed ID: 26041642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tubular Unimolecular Transmembrane Channels: Construction Strategy and Transport Activities.
    Si W; Xin P; Li ZT; Hou JL
    Acc Chem Res; 2015 Jun; 48(6):1612-9. PubMed ID: 26017272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water channel formation and ion transport in linear and branched lipid bilayers.
    Wang S; Larson RG
    Phys Chem Chem Phys; 2014 Apr; 16(16):7251-62. PubMed ID: 24618598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of ion channels in lipid bilayers by a peptide with the predicted transmembrane sequence of botulinum neurotoxin A.
    Oblatt-Montal M; Yamazaki M; Nelson R; Montal M
    Protein Sci; 1995 Aug; 4(8):1490-7. PubMed ID: 8520474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ion transport through lipid bilayers by synthetic ionophores: modulation of activity and selectivity.
    De Riccardis F; Izzo I; Montesarchio D; Tecilla P
    Acc Chem Res; 2013 Dec; 46(12):2781-90. PubMed ID: 23534613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The importance of dehydration in determining ion transport in narrow pores.
    Richards LA; Schäfer AI; Richards BS; Corry B
    Small; 2012 Jun; 8(11):1701-9. PubMed ID: 22434668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Persistent Organic Nanopores Amenable to Structural and Functional Tuning.
    Wei X; Zhang G; Shen Y; Zhong Y; Liu R; Yang N; Al-Mkhaizim FY; Kline MA; He L; Li M; Lu ZL; Shao Z; Gong B
    J Am Chem Soc; 2016 Mar; 138(8):2749-54. PubMed ID: 26877246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transmembrane delivery of anticancer drugs through self-assembly of cyclic peptide nanotubes.
    Chen J; Zhang B; Xia F; Xie Y; Jiang S; Su R; Lu Y; Wu W
    Nanoscale; 2016 Apr; 8(13):7127-36. PubMed ID: 26964879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proton conduction in gramicidin A and in its dioxolane-linked dimer in different lipid bilayers.
    Cukierman S; Quigley EP; Crumrine DS
    Biophys J; 1997 Nov; 73(5):2489-502. PubMed ID: 9370442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redesigning channel-forming peptides: amino acid substitutions that enhance rates of supramolecular self-assembly and raise ion transport activity.
    Shank LP; Broughman JR; Takeguchi W; Cook G; Robbins AS; Hahn L; Radke G; Iwamoto T; Schultz BD; Tomich JM
    Biophys J; 2006 Mar; 90(6):2138-50. PubMed ID: 16387776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of transmembrane pore induced by Bax-derived peptide: evidence for lipidic pores.
    Qian S; Wang W; Yang L; Huang HW
    Proc Natl Acad Sci U S A; 2008 Nov; 105(45):17379-83. PubMed ID: 18987313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.