These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 29712723)

  • 1. Modification by isolevuglandins, highly reactive γ-ketoaldehydes, deleteriously alters high-density lipoprotein structure and function.
    May-Zhang LS; Yermalitsky V; Huang J; Pleasent T; Borja MS; Oda MN; Jerome WG; Yancey PG; Linton MF; Davies SS
    J Biol Chem; 2018 Jun; 293(24):9176-9187. PubMed ID: 29712723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modified sites and functional consequences of 4-oxo-2-nonenal adducts in HDL that are elevated in familial hypercholesterolemia.
    May-Zhang LS; Yermalitsky V; Melchior JT; Morris J; Tallman KA; Borja MS; Pleasent T; Amarnath V; Song W; Yancey PG; Davidson WS; Linton MF; Davies SS
    J Biol Chem; 2019 Dec; 294(50):19022-19033. PubMed ID: 31666337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scavenging of reactive dicarbonyls with 2-hydroxybenzylamine reduces atherosclerosis in hypercholesterolemic Ldlr
    Tao H; Huang J; Yancey PG; Yermalitsky V; Blakemore JL; Zhang Y; Ding L; Zagol-Ikapitte I; Ye F; Amarnath V; Boutaud O; Oates JA; Roberts LJ; Davies SS; Linton MF
    Nat Commun; 2020 Aug; 11(1):4084. PubMed ID: 32796843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scavenging dicarbonyls with 5'-O-pentyl-pyridoxamine increases HDL net cholesterol efflux capacity and attenuates atherosclerosis and insulin resistance.
    Huang J; Tao H; Yancey PG; Leuthner Z; May-Zhang LS; Jung JY; Zhang Y; Ding L; Amarnath V; Liu D; Collins S; Davies SS; Linton MF
    Mol Metab; 2023 Jan; 67():101651. PubMed ID: 36481344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolevuglandin-type lipid aldehydes induce the inflammatory response of macrophages by modifying phosphatidylethanolamines and activating the receptor for advanced glycation endproducts.
    Guo L; Chen Z; Amarnath V; Yancey PG; Van Lenten BJ; Savage JR; Fazio S; Linton MF; Davies SS
    Antioxid Redox Signal; 2015 Jun; 22(18):1633-45. PubMed ID: 25751734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myeloperoxidase-induced modification of HDL by isolevuglandins inhibits paraoxonase-1 activity.
    Aggarwal G; May-Zhang LS; Yermalitsky V; Dikalov S; Voynov MA; Amarnath V; Kon V; Linton MF; Vickers KC; Davies SS
    J Biol Chem; 2021 Sep; 297(3):101019. PubMed ID: 34331945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modifying apolipoprotein A-I by malondialdehyde, but not by an array of other reactive carbonyls, blocks cholesterol efflux by the ABCA1 pathway.
    Shao B; Pennathur S; Pagani I; Oda MN; Witztum JL; Oram JF; Heinecke JW
    J Biol Chem; 2010 Jun; 285(24):18473-84. PubMed ID: 20378541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-function relationships in reconstituted HDL: Focus on antioxidative activity and cholesterol efflux capacity.
    Cukier AMO; Therond P; Didichenko SA; Guillas I; Chapman MJ; Wright SD; Kontush A
    Biochim Biophys Acta Mol Cell Biol Lipids; 2017 Sep; 1862(9):890-900. PubMed ID: 28529180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human apolipoprotein A-II enrichment displaces paraoxonase from HDL and impairs its antioxidant properties: a new mechanism linking HDL protein composition and antiatherogenic potential.
    Ribas V; Sánchez-Quesada JL; Antón R; Camacho M; Julve J; Escolà-Gil JC; Vila L; Ordóñez-Llanos J; Blanco-Vaca F
    Circ Res; 2004 Oct; 95(8):789-97. PubMed ID: 15388641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolevuglandins (isoLGs) as toxic lipid peroxidation byproducts and their pathogenetic role in human diseases.
    Aschner M; Nguyen TT; Sinitskii AI; Santamaría A; Bornhorst J; Ajsuvakova OP; da Rocha JBT; Skalny AV; Tinkov AA
    Free Radic Biol Med; 2021 Jan; 162():266-273. PubMed ID: 33099003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cross-linking modifications of HDL apoproteins by oxidized phospholipids: structural characterization,
    Gao D; Ashraf MZ; Zhang L; Kar N; Byzova TV; Podrez EA
    J Biol Chem; 2020 Feb; 295(7):1973-1984. PubMed ID: 31907281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactive gamma-ketoaldehydes as novel activators of hepatic stellate cells in vitro.
    Longato L; Andreola F; Davies SS; Roberts JL; Fusai G; Pinzani M; Moore K; Rombouts K
    Free Radic Biol Med; 2017 Jan; 102():162-173. PubMed ID: 27890721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactive Dicarbonyl Scavenging Effectively Reduces MPO-Mediated Oxidation of HDL and Restores PON1 Activity.
    Huang J; Yancey PG; Tao H; Borja MS; Smith LE; Kon V; Davies SS; Linton MF
    Nutrients; 2020 Jun; 12(7):. PubMed ID: 32629758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased atherosclerosis in mice lacking apolipoprotein A-I attributable to both impaired reverse cholesterol transport and increased inflammation.
    Moore RE; Navab M; Millar JS; Zimetti F; Hama S; Rothblat GH; Rader DJ
    Circ Res; 2005 Oct; 97(8):763-71. PubMed ID: 16151025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The molecular structure of apolipoprotein A-II modulates the capacity of HDL to promote cell cholesterol efflux.
    Bernini F; Calabresi L; Bonfadini G; Franceschini G
    Biochim Biophys Acta; 1996 Jan; 1299(1):103-9. PubMed ID: 8555242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myeloperoxidase: an inflammatory enzyme for generating dysfunctional high density lipoprotein.
    Shao B; Oda MN; Oram JF; Heinecke JW
    Curr Opin Cardiol; 2006 Jul; 21(4):322-8. PubMed ID: 16755201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oral D-4F causes formation of pre-beta high-density lipoprotein and improves high-density lipoprotein-mediated cholesterol efflux and reverse cholesterol transport from macrophages in apolipoprotein E-null mice.
    Navab M; Anantharamaiah GM; Reddy ST; Hama S; Hough G; Grijalva VR; Wagner AC; Frank JS; Datta G; Garber D; Fogelman AM
    Circulation; 2004 Jun; 109(25):3215-20. PubMed ID: 15197147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo interactions of apoA-II, apoA-I, and hepatic lipase contributing to HDL structure and antiatherogenic functions.
    Hedrick CC; Castellani LW; Wong H; Lusis AJ
    J Lipid Res; 2001 Apr; 42(4):563-70. PubMed ID: 11290828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased high density lipoprotein (HDL), defective hepatic catabolism of ApoA-I and ApoA-II, and decreased ApoA-I mRNA in ob/ob mice. Possible role of leptin in stimulation of HDL turnover.
    Silver DL; Jiang XC; Tall AR
    J Biol Chem; 1999 Feb; 274(7):4140-6. PubMed ID: 9933608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Significance of Lipid-Free and Lipid-Associated ApoA-I in Cellular Cho-lesterol Efflux.
    Dergunov AD; Garaeva EA; Savushkin EV; Litvinov DY
    Curr Protein Pept Sci; 2017; 18(1):92-99. PubMed ID: 27412400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.