BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 29712783)

  • 1. Conditional Bistability, a Generic Cellular Mnemonic Mechanism for Robust and Flexible Working Memory Computations.
    Rodriguez G; Sarazin M; Clemente A; Holden S; Paz JT; Delord B
    J Neurosci; 2018 May; 38(22):5209-5219. PubMed ID: 29712783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear Relationship Between Spike-Dependent Calcium Influx and TRPC Channel Activation Enables Robust Persistent Spiking in Neurons of the Anterior Cingulate Cortex.
    Ratté S; Karnup S; Prescott SA
    J Neurosci; 2018 Feb; 38(7):1788-1801. PubMed ID: 29335357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predictive features of persistent activity emergence in regular spiking and intrinsic bursting model neurons.
    Sidiropoulou K; Poirazi P
    PLoS Comput Biol; 2012; 8(4):e1002489. PubMed ID: 22570601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Background-activity-dependent properties of a network model for working memory that incorporates cellular bistability.
    Fall CP; Lewis TJ; Rinzel J
    Biol Cybern; 2005 Aug; 93(2):109-18. PubMed ID: 15806392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induction and modulation of persistent activity in a layer V PFC microcircuit model.
    Papoutsi A; Sidiropoulou K; Cutsuridis V; Poirazi P
    Front Neural Circuits; 2013; 7():161. PubMed ID: 24130519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A model of visuospatial working memory in prefrontal cortex: recurrent network and cellular bistability.
    Camperi M; Wang XJ
    J Comput Neurosci; 1998 Dec; 5(4):383-405. PubMed ID: 9877021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beyond bistability: biophysics and temporal dynamics of working memory.
    Durstewitz D; Seamans JK
    Neuroscience; 2006 Apr; 139(1):119-33. PubMed ID: 16326020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mean-driven and fluctuation-driven persistent activity in recurrent networks.
    Renart A; Moreno-Bote R; Wang XJ; Parga N
    Neural Comput; 2007 Jan; 19(1):1-46. PubMed ID: 17134316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Short-term plasticity explains irregular persistent activity in working memory tasks.
    Hansel D; Mato G
    J Neurosci; 2013 Jan; 33(1):133-49. PubMed ID: 23283328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Online Learning and Memory of Neural Trajectory Replays for Prefrontal Persistent and Dynamic Representations in the Irregular Asynchronous State.
    Sarazin MXB; Victor J; Medernach D; Naudé J; Delord B
    Front Neural Circuits; 2021; 15():648538. PubMed ID: 34305535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mnemonic Encoding and Cortical Organization in Parietal and Prefrontal Cortices.
    Masse NY; Hodnefield JM; Freedman DJ
    J Neurosci; 2017 Jun; 37(25):6098-6112. PubMed ID: 28539423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bistability induces episodic spike communication by inhibitory neurons in neuronal networks.
    Kazantsev VB; Asatryan SY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 1):031913. PubMed ID: 22060409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Persistent activity and the single-cell frequency-current curve in a cortical network model.
    Brunel N
    Network; 2000 Nov; 11(4):261-80. PubMed ID: 11128167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neurocomputational models of working memory.
    Durstewitz D; Seamans JK; Sejnowski TJ
    Nat Neurosci; 2000 Nov; 3 Suppl():1184-91. PubMed ID: 11127836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting operational regimes of interest in recurrent neural networks.
    Ekelmans P; Kraynyukova N; Tchumatchenko T
    PLoS Comput Biol; 2023 May; 19(5):e1011097. PubMed ID: 37186668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. "What" and "where" in visual working memory: a computational neurodynamical perspective for integrating FMRI and single-neuron data.
    Deco G; Rolls ET; Horwitz B
    J Cogn Neurosci; 2004 May; 16(4):683-701. PubMed ID: 15165356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synaptic basis of cortical persistent activity: the importance of NMDA receptors to working memory.
    Wang XJ
    J Neurosci; 1999 Nov; 19(21):9587-603. PubMed ID: 10531461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implications of synaptic biophysics for recurrent network dynamics and active memory.
    Durstewitz D
    Neural Netw; 2009 Oct; 22(8):1189-200. PubMed ID: 19647396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Persistent activity in neural networks with dynamic synapses.
    Barak O; Tsodyks M
    PLoS Comput Biol; 2007 Feb; 3(2):e35. PubMed ID: 17319739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NMDA and GABAB (KIR) conductances: the "perfect couple" for bistability.
    Sanders H; Berends M; Major G; Goldman MS; Lisman JE
    J Neurosci; 2013 Jan; 33(2):424-9. PubMed ID: 23303922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.