BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 29712833)

  • 1. Genomic adaptation to drought in wild barley is driven by edaphic natural selection at the Tabigha Evolution Slope.
    Wang X; Chen ZH; Yang C; Zhang X; Jin G; Chen G; Wang Y; Holford P; Nevo E; Zhang G; Dai F
    Proc Natl Acad Sci U S A; 2018 May; 115(20):5223-5228. PubMed ID: 29712833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-Omics Analysis Reveals the Mechanism Underlying the Edaphic Adaptation in Wild Barley at Evolution Slope (Tabigha).
    Cai S; Shen Q; Huang Y; Han Z; Wu D; Chen ZH; Nevo E; Zhang G
    Adv Sci (Weinh); 2021 Oct; 8(20):e2101374. PubMed ID: 34390227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive microclimatic structural and expressional dehydrin 1 evolution in wild barley, Hordeum spontaneum, at 'Evolution Canyon', Mount Carmel, Israel.
    Yang Z; Zhang T; Bolshoy A; Beharav A; Nevo E
    Mol Ecol; 2009 May; 18(9):2063-75. PubMed ID: 19344351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RAPD divergence caused by microsite edaphic selection in wild barley.
    Owuor ED; Fahima T; Beharav A; Korol A; Nevo E
    Genetica; 1999 Feb; 105(2):177-92. PubMed ID: 16220393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome sequencing of two wild barley (Hordeum spontaneum L.) ecotypes differentially adapted to drought stress reveals ecotype-specific transcripts.
    Bedada G; Westerbergh A; Müller T; Galkin E; Bdolach E; Moshelion M; Fridman E; Schmid KJ
    BMC Genomics; 2014 Nov; 15(1):995. PubMed ID: 25408241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ecological genomics of natural plant populations: the Israeli perspective.
    Nevo E
    Methods Mol Biol; 2009; 513():321-44. PubMed ID: 19347652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive microclimatic evolution of the dehydrin 6 gene in wild barley at "Evolution Canyon", Israel.
    Yang Z; Zhang T; Li G; Nevo E
    Genetica; 2011 Dec; 139(11-12):1429-38. PubMed ID: 22415104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNA-Seq analysis identifies genes associated with differential reproductive success under drought-stress in accessions of wild barley Hordeum spontaneum.
    Hübner S; Korol AB; Schmid KJ
    BMC Plant Biol; 2015 Jun; 15():134. PubMed ID: 26055625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome resequencing and transcriptome profiling reveal molecular evidence of tolerance to water deficit in barley.
    Qiu CW; Ma Y; Liu W; Zhang S; Wang Y; Cai S; Zhang G; Chater CCC; Chen ZH; Wu F
    J Adv Res; 2023 Jul; 49():31-45. PubMed ID: 36170948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymorphism at rDNA loci in barley and its relation with climatic variables.
    Gupta PK; Sharma PK; Balyan HS; Roy JK; Sharma S; Beharav A; Nevo E
    Theor Appl Genet; 2002 Feb; 104(2-3):473-481. PubMed ID: 12582721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drought and salt tolerances in wild relatives for wheat and barley improvement.
    Nevo E; Chen G
    Plant Cell Environ; 2010 Apr; 33(4):670-85. PubMed ID: 20040064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptome analysis revealed the drought-responsive genes in Tibetan hulless barley.
    Zeng X; Bai L; Wei Z; Yuan H; Wang Y; Xu Q; Tang Y; Nyima T
    BMC Genomics; 2016 May; 17():386. PubMed ID: 27207260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological and molecular analysis on root growth associated with the tolerance to aluminum and drought individual and combined in Tibetan wild and cultivated barley.
    Ahmed IM; Nadira UA; Cao F; He X; Zhang G; Wu F
    Planta; 2016 Apr; 243(4):973-85. PubMed ID: 26748913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HvEXPB7, a novel β-expansin gene revealed by the root hair transcriptome of Tibetan wild barley, improves root hair growth under drought stress.
    He X; Zeng J; Cao F; Ahmed IM; Zhang G; Vincze E; Wu F
    J Exp Bot; 2015 Dec; 66(22):7405-19. PubMed ID: 26417018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular evidence for adaptive evolution of drought tolerance in wild cereals.
    Wang Y; Chen G; Zeng F; Han Z; Qiu CW; Zeng M; Yang Z; Xu F; Wu D; Deng F; Xu S; Chater C; Korol A; Shabala S; Wu F; Franks P; Nevo E; Chen ZH
    New Phytol; 2023 Jan; 237(2):497-514. PubMed ID: 36266957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Incipient sympatric speciation in wild barley caused by geological-edaphic divergence.
    Li K; Ren X; Song X; Li X; Zhou Y; Harlev E; Sun D; Nevo E
    Life Sci Alliance; 2020 Dec; 3(12):. PubMed ID: 33082129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative proteomic analysis of drought tolerance in the two contrasting Tibetan wild genotypes and cultivated genotype.
    Wang N; Zhao J; He X; Sun H; Zhang G; Wu F
    BMC Genomics; 2015 Jun; 16(1):432. PubMed ID: 26044796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive evolution of duplicated hsp17 genes in wild barley from microclimatically divergent sites of Israel.
    Zhang T; Li GR; Yang ZJ; Nevo E
    Genet Mol Res; 2014 Feb; 13(1):1220-32. PubMed ID: 24634179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mosaic microecological differential stress causes adaptive microsatellite divergence in wild barley, Hordeum spontaneum, at Neve Yaar, Israel.
    Huang Q; Beharav A; Li Y; Kirzhner V; Nevo E
    Genome; 2002 Dec; 45(6):1216-29. PubMed ID: 12502268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ecological-genomic diversity of microsatellites in wild barley, Hordeum spontaneum, populations in Jordan.
    Baek HJ; Beharav A; Nevo E
    Theor Appl Genet; 2003 Feb; 106(3):397-410. PubMed ID: 12589539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.