These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Single cell genomics reveals activation signatures of endogenous SCAR's networks in aneuploid human embryos and clinically intractable malignant tumors. Glinsky GV Cancer Lett; 2016 Oct; 381(1):176-93. PubMed ID: 27497790 [TBL] [Abstract][Full Text] [Related]
6. Identifying Driver Genomic Alterations in Cancers by Searching Minimum-Weight, Mutually Exclusive Sets. Lu S; Lu KN; Cheng SY; Hu B; Ma X; Nystrom N; Lu X PLoS Comput Biol; 2015 Aug; 11(8):e1004257. PubMed ID: 26317392 [TBL] [Abstract][Full Text] [Related]
7. Our changing view of the genomic landscape of cancer. Bell DW J Pathol; 2010 Jan; 220(2):231-43. PubMed ID: 19918804 [TBL] [Abstract][Full Text] [Related]
9. A system for detecting high impact-low frequency mutations in primary tumors and metastases. Anjanappa M; Hao Y; Simpson ER; Bhat-Nakshatri P; Nelson JB; Tersey SA; Mirmira RG; Cohen-Gadol AA; Saadatzadeh MR; Li L; Fang F; Nephew KP; Miller KD; Liu Y; Nakshatri H Oncogene; 2018 Jan; 37(2):185-196. PubMed ID: 28892047 [TBL] [Abstract][Full Text] [Related]
10. The cancer cell map initiative: defining the hallmark networks of cancer. Krogan NJ; Lippman S; Agard DA; Ashworth A; Ideker T Mol Cell; 2015 May; 58(4):690-8. PubMed ID: 26000852 [TBL] [Abstract][Full Text] [Related]
12. Network-Based Method for Inferring Cancer Progression at the Pathway Level from Cross-Sectional Mutation Data. Wu H; Gao L; Kasabov NK IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(6):1036-1044. PubMed ID: 26915128 [TBL] [Abstract][Full Text] [Related]
13. The mutational landscape of phosphorylation signaling in cancer. Reimand J; Wagih O; Bader GD Sci Rep; 2013 Oct; 3():2651. PubMed ID: 24089029 [TBL] [Abstract][Full Text] [Related]
14. The Discovery of Mutated Driver Pathways in Cancer: Models and Algorithms. Zhang J; Zhang S IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(3):988-998. PubMed ID: 28113329 [TBL] [Abstract][Full Text] [Related]
15. Analysis of pathway mutation profiles highlights collaboration between cancer-associated superpathways. Gu Y; Zhao W; Xia J; Zhang Y; Wu R; Wang C; Guo Z Hum Mutat; 2011 Sep; 32(9):1028-35. PubMed ID: 21618647 [TBL] [Abstract][Full Text] [Related]
16. A Gene Gravity Model for the Evolution of Cancer Genomes: A Study of 3,000 Cancer Genomes across 9 Cancer Types. Cheng F; Liu C; Lin CC; Zhao J; Jia P; Li WH; Zhao Z PLoS Comput Biol; 2015 Sep; 11(9):e1004497. PubMed ID: 26352260 [TBL] [Abstract][Full Text] [Related]
17. Integration of multiple networks and pathways identifies cancer driver genes in pan-cancer analysis. Cava C; Bertoli G; Colaprico A; Olsen C; Bontempi G; Castiglioni I BMC Genomics; 2018 Jan; 19(1):25. PubMed ID: 29304754 [TBL] [Abstract][Full Text] [Related]
19. MUFFINN: cancer gene discovery via network analysis of somatic mutation data. Cho A; Shim JE; Kim E; Supek F; Lehner B; Lee I Genome Biol; 2016 Jun; 17(1):129. PubMed ID: 27333808 [TBL] [Abstract][Full Text] [Related]
20. Cancer Gene Discovery by Network Analysis of Somatic Mutations Using the MUFFINN Server. Han H; Lehner B; Lee I Methods Mol Biol; 2019; 1907():37-50. PubMed ID: 30542989 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]