These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 29713031)

  • 41. Enhanced Fluorescence for Bioassembly by Environment-Switching Doping of Metal Ions.
    Tao K; Chen Y; Orr AA; Tian Z; Makam P; Gilead S; Si M; Rencus-Lazar S; Qu S; Zhang M; Tamamis P; Gazit E
    Adv Funct Mater; 2020 Mar; 30(10):. PubMed ID: 32256278
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Multiple Light Control Mechanisms in ATP-Fueled Non-equilibrium DNA Systems.
    Deng J; Bezold D; Jessen HJ; Walther A
    Angew Chem Int Ed Engl; 2020 Jul; 59(29):12084-12092. PubMed ID: 32232894
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Impact of NDI-Core Substitution on the pH-Responsive Nature of Peptide-Tethered Luminescent Supramolecular Polymers.
    Sarkar A; Kölsch JC; Berač CM; Venugopal A; Sasmal R; Otter R; Besenius P; George SJ
    ChemistryOpen; 2020 Mar; 9(3):346-350. PubMed ID: 32195075
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enzymatic Noncovalent Synthesis of Supramolecular Soft Matter for Biomedical Applications.
    Shy AN; Kim BJ; Xu B
    Matter; 2019 Nov; 1(5):1127-1147. PubMed ID: 32104791
    [TBL] [Abstract][Full Text] [Related]  

  • 45.
    Korendovych IV; DeGrado WF
    Q Rev Biophys; 2020 Feb; 53():e3. PubMed ID: 32041676
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Adaptive Polymeric Assemblies for Applications in Biomimicry and Nanomedicine.
    Altay Y; Cao S; Che H; Abdelmohsen LKEA; van Hest JCM
    Biomacromolecules; 2019 Nov; 20(11):4053-4064. PubMed ID: 31642319
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fatty acid based transient nanostructures for temporal regulation of artificial peroxidase activity.
    Ahmed S; Chatterjee A; Das K; Das D
    Chem Sci; 2019 Aug; 10(32):7574-7578. PubMed ID: 31588307
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Chiral nanostructures self-assembled from nitrocinnamic amide amphiphiles: substituent and solvent effects.
    Jiang H; Fan H; Jiang Y; Zhang L; Liu M
    Beilstein J Nanotechnol; 2019; 10():1608-1617. PubMed ID: 31467823
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Peptide Tectonics: Encoded Structural Complementarity Dictates Programmable Self-Assembly.
    Lou S; Wang X; Yu Z; Shi L
    Adv Sci (Weinh); 2019 Jul; 6(13):1802043. PubMed ID: 31380179
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Assembling a Natural Small Molecule into a Supramolecular Network with High Structural Order and Dynamic Functions.
    Zhang Q; Deng YX; Luo HX; Shi CY; Geise GM; Feringa BL; Tian H; Qu DH
    J Am Chem Soc; 2019 Aug; 141(32):12804-12814. PubMed ID: 31348651
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Programmable dynamic steady states in ATP-driven nonequilibrium DNA systems.
    Heinen L; Walther A
    Sci Adv; 2019 Jul; 5(7):eaaw0590. PubMed ID: 31334349
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Catalytic Nanoassemblies Formed by Short Peptides Promote Highly Enantioselective Transfer Hydrogenation.
    Dolan MA; Basa PN; Zozulia O; Lengyel Z; Lebl R; Kohn EM; Bhattacharya S; Korendovych IV
    ACS Nano; 2019 Aug; 13(8):9292-9297. PubMed ID: 31314486
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Chemical fuel-driven living and transient supramolecular polymerization.
    Jain A; Dhiman S; Dhayani A; Vemula PK; George SJ
    Nat Commun; 2019 Jan; 10(1):450. PubMed ID: 30683874
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Progress in synthesizing protocells.
    Toparlak OD; Mansy SS
    Exp Biol Med (Maywood); 2019 Mar; 244(4):304-313. PubMed ID: 30509137
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cell-Compatible Nanoprobes for Imaging Intracellular Phosphatase Activities.
    Wang J; Zhou J; He H; Wu D; Du X; Xu B
    Chembiochem; 2019 Feb; 20(4):526-531. PubMed ID: 30388302
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reversible self-assembly of superstructured networks.
    Freeman R; Han M; Álvarez Z; Lewis JA; Wester JR; Stephanopoulos N; McClendon MT; Lynsky C; Godbe JM; Sangji H; Luijten E; Stupp SI
    Science; 2018 Nov; 362(6416):808-813. PubMed ID: 30287619
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Unraveling Mechanisms of Chiral Induction in Double-Helical Metallopolymers.
    Greenfield JL; Evans EW; Di Nuzzo D; Di Antonio M; Friend RH; Nitschke JR
    J Am Chem Soc; 2018 Aug; 140(32):10344-10353. PubMed ID: 30024156
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Amino-acid-encoded biocatalytic self-assembly enables the formation of transient conducting nanostructures.
    Kumar M; Ing NL; Narang V; Wijerathne NK; Hochbaum AI; Ulijn RV
    Nat Chem; 2018 Jul; 10(7):696-703. PubMed ID: 29713031
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biocatalytic Pathway Selection in Transient Tripeptide Nanostructures.
    Pappas CG; Sasselli IR; Ulijn RV
    Angew Chem Int Ed Engl; 2015 Jul; 54(28):8119-23. PubMed ID: 26014441
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biocatalytic Self-Assembly Cascades.
    Sahoo JK; Pappas CG; Sasselli IR; Abul-Haija YM; Ulijn RV
    Angew Chem Int Ed Engl; 2017 Jun; 56(24):6828-6832. PubMed ID: 28488273
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.