BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 29713377)

  • 21. Biological pretreatment of corn stover with Phlebia brevispora NRRL-13108 for enhanced enzymatic hydrolysis and efficient ethanol production.
    Saha BC; Kennedy GJ; Qureshi N; Cotta MA
    Biotechnol Prog; 2017 Mar; 33(2):365-374. PubMed ID: 27997076
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enzymatic digestibility and ethanol fermentability of AFEX-treated starch-rich lignocellulosics such as corn silage and whole corn plant.
    Shao Q; Chundawat SP; Krishnan C; Bals B; Sousa Lda C; Thelen KD; Dale BE; Balan V
    Biotechnol Biofuels; 2010 Jun; 3():12. PubMed ID: 20534126
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimization of ethanol production from microfluidized wheat straw by response surface methodology.
    Turhan O; Isci A; Mert B; Sakiyan O; Donmez S
    Prep Biochem Biotechnol; 2015; 45(8):785-95. PubMed ID: 25181638
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimized simultaneous saccharification and co-fermentation of rice straw for ethanol production by Saccharomyces cerevisiae and Scheffersomyces stipitis co-culture using design of experiments.
    Suriyachai N; Weerasaia K; Laosiripojana N; Champreda V; Unrean P
    Bioresour Technol; 2013 Aug; 142():171-8. PubMed ID: 23735799
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improving simultaneous saccharification and co-fermentation of pretreated wheat straw using both enzyme and substrate feeding.
    Olofsson K; Palmqvist B; Lidén G
    Biotechnol Biofuels; 2010 Aug; 3():17. PubMed ID: 20678195
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simultaneous saccharification and cofermentation of lignocellulosic residues from commercial furfural production and corn kernels using different nutrient media.
    Tang Y; Zhao D; Cristhian C; Jiang J
    Biotechnol Biofuels; 2011 Jul; 4():22. PubMed ID: 21801455
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficient utilization of hemicellulose and cellulose in alkali liquor-pretreated corncob for bioethanol production at high solid loading by Spathaspora passalidarum U1-58.
    Yu H; Guo J; Chen Y; Fu G; Li B; Guo X; Xiao D
    Bioresour Technol; 2017 May; 232():168-175. PubMed ID: 28231534
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A comparative study of ethanol production using dilute acid, ionic liquid and AFEX™ pretreated corn stover.
    Uppugundla N; da Costa Sousa L; Chundawat SP; Yu X; Simmons B; Singh S; Gao X; Kumar R; Wyman CE; Dale BE; Balan V
    Biotechnol Biofuels; 2014; 7():72. PubMed ID: 24917886
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combining the effects of process design and pH for improved xylose conversion in high solid ethanol production from Arundo donax.
    Palmqvist B; Lidén G
    AMB Express; 2014; 4():41. PubMed ID: 24949274
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Controlled feeding of cellulases improves conversion of xylose in simultaneous saccharification and co-fermentation for bioethanol production.
    Olofsson K; Wiman M; Lidén G
    J Biotechnol; 2010 Jan; 145(2):168-75. PubMed ID: 19900494
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bio-ethanol production through simultaneous saccharification and co-fermentation (SSCF) of a low-moisture anhydrous ammonia (LMAA)-pretreated napiegrass (Pennisetum purpureum Schumach).
    Yasuda M; Nagai H; Takeo K; Ishii Y; Ohta K
    Springerplus; 2014; 3():333. PubMed ID: 26034662
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient production of bioethanol from corn stover by pretreatment with a combination of sulfuric acid and sodium hydroxide.
    Tan L; Tang YQ; Nishimura H; Takei S; Morimura S; Kida K
    Prep Biochem Biotechnol; 2013; 43(7):682-95. PubMed ID: 23768113
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bioconversion of kraft paper mill sludges to ethanol by SSF and SSCF.
    Kang L; Wang W; Lee YY
    Appl Biochem Biotechnol; 2010 May; 161(1-8):53-66. PubMed ID: 20099047
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Production of bioethanol and value added compounds from wheat straw through combined alkaline/alkaline-peroxide pretreatment.
    Yuan Z; Wen Y; Li G
    Bioresour Technol; 2018 Jul; 259():228-236. PubMed ID: 29567594
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pretreatment of corn stover by soaking in aqueous ammonia at moderate temperatures.
    Kim TH; Lee YY
    Appl Biochem Biotechnol; 2007 Apr; 137-140(1-12):81-92. PubMed ID: 18478378
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hybrid SSF/SHF Processing of SO
    Cassells B; Karhumaa K; Sànchez I Nogué V; Lidén G
    Appl Biochem Biotechnol; 2017 Feb; 181(2):536-547. PubMed ID: 27631121
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pretreatment on corn stover with low concentration of formic acid.
    Xu J; Thomsen MH; Thomsen AB
    J Microbiol Biotechnol; 2009 Aug; 19(8):845-50. PubMed ID: 19734724
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fed-batch SSCF using steam-exploded wheat straw at high dry matter consistencies and a xylose-fermenting Saccharomyces cerevisiae strain: effect of laccase supplementation.
    Moreno AD; Tomás-Pejó E; Ibarra D; Ballesteros M; Olsson L
    Biotechnol Biofuels; 2013 Nov; 6(1):160. PubMed ID: 24219973
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improved cellulosic ethanol production from corn stover with a low cellulase input using a β-glucosidase-producing yeast following a dry biorefining process.
    Geberekidan M; Zhang J; Liu ZL; Bao J
    Bioprocess Biosyst Eng; 2019 Feb; 42(2):297-304. PubMed ID: 30411143
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ethanol and biogas production after steam pretreatment of corn stover with or without the addition of sulphuric acid.
    Bondesson PM; Galbe M; Zacchi G
    Biotechnol Biofuels; 2013 Jan; 6(1):11. PubMed ID: 23356481
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.