These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 29713450)

  • 1. Alkanethiolate-capped palladium nanoparticles for selective catalytic hydrogenation of dienes and trienes.
    Chen TA; Shon YS
    Catal Sci Technol; 2017 Oct; 7(20):4823-4829. PubMed ID: 29713450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alkanethiolate-Capped Palladium Nanoparticles for Regio- and Stereoselective Hydrogenation of Allenes.
    Chen TA; Shon YS
    Catalysts; 2018 Oct; 8(10):. PubMed ID: 30733870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of Alkanethiolate-Capped Metal Nanoparticles Using Alkyl Thiosulfate Ligand Precursors: A Method to Generate Promising Reagents for Selective Catalysis.
    San KA; Shon YS
    Nanomaterials (Basel); 2018 May; 8(5):. PubMed ID: 29783714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Colloidal Palladium Nanoparticles for Selective Hydrogenation of Styrene Derivatives with Reactive Functional Groups.
    Mahdaly MA; Zhu JS; Nguyen V; Shon YS
    ACS Omega; 2019 Dec; 4(24):20819-20828. PubMed ID: 31858068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanistic interpretation of selective catalytic hydrogenation and isomerization of alkenes and dienes by ligand deactivated Pd nanoparticles.
    Zhu JS; Shon YS
    Nanoscale; 2015 Nov; 7(42):17786-90. PubMed ID: 26455381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of Partially Poisoned Alkanethiolate-Capped Platinum Nanoparticles for Hydrogenation of Activated Terminal Alkynes.
    San KA; Chen V; Shon YS
    ACS Appl Mater Interfaces; 2017 Mar; 9(11):9823-9832. PubMed ID: 28252941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolated Effects of Surface Ligand Density on the Catalytic Activity and Selectivity of Palladium Nanoparticles.
    Vargas KM; San KA; Shon YS
    ACS Appl Nano Mater; 2019 Nov; 2(11):7188-7196. PubMed ID: 34085029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of Graphene Oxide Supports on Solution-Phase Catalysis of Thiolate-Protected Palladium Nanoparticles in Water.
    Chen V; Pan H; Jacobs R; Derakhshan S; Shon YS
    New J Chem; 2017 Jan; 41(1):177-183. PubMed ID: 28652688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pd Nanoparticle-Catalyzed Isomerization vs Hydrogenation of Allyl Alcohol: Solvent-Dependent Regioselectivity.
    Sadeghmoghaddam E; Gu H; Shon YS
    ACS Catal; 2012 Sep; 2(9):1838-1845. PubMed ID: 27642537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unsupported Micellar Palladium Nanoparticles for Biphasic Hydrogenation and Isomerization of Hydrophobic Allylic Alcohols in Water.
    Maung MS; Dinh T; Salazar C; Shon YS
    Colloids Surf A Physicochem Eng Asp; 2017 Jan; 513():367-372. PubMed ID: 28579696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water-soluble Pd nanoparticles synthesized from ω-carboxyl-S-alkanethiosulfate ligand precursors as unimolecular micelle catalysts.
    Gavia DJ; Maung MS; Shon YS
    ACS Appl Mater Interfaces; 2013 Dec; 5(23):12432-40. PubMed ID: 24246150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly selective hydrogenation of phenol and derivatives over a Pd@carbon nitride catalyst in aqueous media.
    Wang Y; Yao J; Li H; Su D; Antonietti M
    J Am Chem Soc; 2011 Mar; 133(8):2362-5. PubMed ID: 21294506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proximity Effects of Methyl Group on Ligand Steric Interactions and Colloidal Stability of Palladium Nanoparticles.
    Tieu P; Nguyen V; Shon YS
    Front Chem; 2020; 8():599. PubMed ID: 32754577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Size-Dependent Catalytic Activity of Palladium Nanoparticles Fabricated in Porous Organic Polymers for Alkene Hydrogenation at Room Temperature.
    Mondal J; Trinh QT; Jana A; Ng WK; Borah P; Hirao H; Zhao Y
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15307-19. PubMed ID: 27258184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tandem Catalysis of Ammonia Borane Dehydrogenation and Phenylacetylene Hydrogenation Catalyzed by CeO
    Li X; Song L; Gao D; Kang B; Zhao H; Li C; Hu X; Chen G
    Chemistry; 2020 Apr; 26(19):4419-4424. PubMed ID: 32027761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Screening of Palladium/Charcoal Catalysts for Hydrogenation of Diene Carboxylates with Isolated-Rings (Hetero)aliphatic Scaffold.
    Subotin VV; Vashchenko BV; Asaula VM; Verner EV; Ivanytsya MO; Shvets O; Ostapchuk EN; Grygorenko OO; Ryabukhin SV; Volochnyuk DM; Kolotilov SV
    Molecules; 2023 Jan; 28(3):. PubMed ID: 36770867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pd cluster nanowires as highly efficient catalysts for selective hydrogenation reactions.
    Zhang ZC; Zhang X; Yu QY; Liu ZC; Xu CM; Gao JS; Zhuang J; Wang X
    Chemistry; 2012 Feb; 18(9):2639-45. PubMed ID: 22282407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling surface ligand density and core size of alkanethiolate-capped Pd nanoparticles and their effects on catalysis.
    Gavia DJ; Shon YS
    Langmuir; 2012 Oct; 28(40):14502-8. PubMed ID: 22924990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. "Homeopathic" palladium nanoparticle catalysis of cross carbon-carbon coupling reactions.
    Deraedt C; Astruc D
    Acc Chem Res; 2014 Feb; 47(2):494-503. PubMed ID: 24215156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective and leaching-resistant palladium catalyst on a porous polymer support for phenol hydrogenation.
    Xu S; Du J; Zhou Q; Li H; Wang C; Tang J
    J Colloid Interface Sci; 2021 Dec; 604():876-884. PubMed ID: 34303887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.