These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 29713632)
1. Antimetabolic Effects of Polyphenols in Breast Cancer Cells: Focus on Glucose Uptake and Metabolism. Keating E; Martel F Front Nutr; 2018; 5():25. PubMed ID: 29713632 [TBL] [Abstract][Full Text] [Related]
2. Effect of polyphenols on glucose and lactate transport by breast cancer cells. Martel F; Guedes M; Keating E Breast Cancer Res Treat; 2016 May; 157(1):1-11. PubMed ID: 27097608 [TBL] [Abstract][Full Text] [Related]
3. Targeting Glucose Transporters for Breast Cancer Therapy: The Effect of Natural and Synthetic Compounds. Barbosa AM; Martel F Cancers (Basel); 2020 Jan; 12(1):. PubMed ID: 31936350 [TBL] [Abstract][Full Text] [Related]
4. Flavonoids against the Warburg phenotype-concepts of predictive, preventive and personalised medicine to cut the Gordian knot of cancer cell metabolism. Samec M; Liskova A; Koklesova L; Samuel SM; Zhai K; Buhrmann C; Varghese E; Abotaleb M; Qaradakhi T; Zulli A; Kello M; Mojzis J; Zubor P; Kwon TK; Shakibaei M; Büsselberg D; Sarria GR; Golubnitschaja O; Kubatka P EPMA J; 2020 Sep; 11(3):377-398. PubMed ID: 32843908 [TBL] [Abstract][Full Text] [Related]
5. Transglutaminase 2 reprogramming of glucose metabolism in mammary epithelial cells via activation of inflammatory signaling pathways. Kumar S; Donti TR; Agnihotri N; Mehta K Int J Cancer; 2014 Jun; 134(12):2798-807. PubMed ID: 24477458 [TBL] [Abstract][Full Text] [Related]
6. Glucose Addiction in Cancer Therapy: Advances and Drawbacks. Granja S; Pinheiro C; Reis RM; Martinho O; Baltazar F Curr Drug Metab; 2015; 16(3):221-42. PubMed ID: 26504932 [TBL] [Abstract][Full Text] [Related]
7. The anticancer properties of dietary polyphenols and its relation with apoptosis. Fresco P; Borges F; Marques MP; Diniz C Curr Pharm Des; 2010 Jan; 16(1):114-34. PubMed ID: 20214622 [TBL] [Abstract][Full Text] [Related]
8. Chemoprevention of Breast Cancer by Dietary Polyphenols. Mocanu MM; Nagy P; Szöllősi J Molecules; 2015 Dec; 20(12):22578-620. PubMed ID: 26694341 [TBL] [Abstract][Full Text] [Related]
9. Caffeic Acid Targets AMPK Signaling and Regulates Tricarboxylic Acid Cycle Anaplerosis while Metformin Downregulates HIF-1α-Induced Glycolytic Enzymes in Human Cervical Squamous Cell Carcinoma Lines. Tyszka-Czochara M; Bukowska-Strakova K; Kocemba-Pilarczyk KA; Majka M Nutrients; 2018 Jun; 10(7):. PubMed ID: 29958416 [TBL] [Abstract][Full Text] [Related]
10. The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression. Vaupel P; Schmidberger H; Mayer A Int J Radiat Biol; 2019 Jul; 95(7):912-919. PubMed ID: 30822194 [TBL] [Abstract][Full Text] [Related]
11. Regulation of glucose uptake in lymphoma cell lines by c-MYC- and PI3K-dependent signaling pathways and impact of glycolytic pathways on cell viability. Broecker-Preuss M; Becher-Boveleth N; Bockisch A; Dührsen U; Müller S J Transl Med; 2017 Jul; 15(1):158. PubMed ID: 28724379 [TBL] [Abstract][Full Text] [Related]
12. Effects of sorafenib on energy metabolism in breast cancer cells: role of AMPK-mTORC1 signaling. Fumarola C; Caffarra C; La Monica S; Galetti M; Alfieri RR; Cavazzoni A; Galvani E; Generali D; Petronini PG; Bonelli MA Breast Cancer Res Treat; 2013 Aug; 141(1):67-78. PubMed ID: 23963659 [TBL] [Abstract][Full Text] [Related]
13. MiR-3662 suppresses hepatocellular carcinoma growth through inhibition of HIF-1α-mediated Warburg effect. Chen Z; Zuo X; Zhang Y; Han G; Zhang L; Wu J; Wang X Cell Death Dis; 2018 May; 9(5):549. PubMed ID: 29748591 [TBL] [Abstract][Full Text] [Related]
14. MicroRNA-129-5p Regulates Glycolysis and Cell Proliferation by Targeting the Glucose Transporter SLC2A3 in Gastric Cancer Cells. Chen D; Wang H; Chen J; Li Z; Li S; Hu Z; Huang S; Zhao Y; He X Front Pharmacol; 2018; 9():502. PubMed ID: 29867504 [TBL] [Abstract][Full Text] [Related]
15. Leptin regulates energy metabolism in MCF-7 breast cancer cells. Blanquer-Rosselló MDM; Oliver J; Sastre-Serra J; Valle A; Roca P Int J Biochem Cell Biol; 2016 Mar; 72():18-26. PubMed ID: 26772821 [TBL] [Abstract][Full Text] [Related]
16. Effect of metformin on estrogen and progesterone receptor-positive (MCF-7) and triple-negative (MDA-MB-231) breast cancer cells. Amaral I; Silva C; Correia-Branco A; Martel F Biomed Pharmacother; 2018 Jun; 102():94-101. PubMed ID: 29550639 [TBL] [Abstract][Full Text] [Related]
17. Bcl2 inhibitor ABT737 reverses the Warburg effect via the Sirt3-HIF1α axis to promote oxidative stress-induced apoptosis in ovarian cancer cells. Dong D; Dong Y; Fu J; Lu S; Yuan C; Xia M; Sun L Life Sci; 2020 Aug; 255():117846. PubMed ID: 32470451 [TBL] [Abstract][Full Text] [Related]
18. Metabolic phenotype of bladder cancer. Massari F; Ciccarese C; Santoni M; Iacovelli R; Mazzucchelli R; Piva F; Scarpelli M; Berardi R; Tortora G; Lopez-Beltran A; Cheng L; Montironi R Cancer Treat Rev; 2016 Apr; 45():46-57. PubMed ID: 26975021 [TBL] [Abstract][Full Text] [Related]
19. Oleanolic Acid Inhibits High Salt-Induced Exaggeration of Warburg-like Metabolism in Breast Cancer Cells. Amara S; Zheng M; Tiriveedhi V Cell Biochem Biophys; 2016 Sep; 74(3):427-34. PubMed ID: 27236294 [TBL] [Abstract][Full Text] [Related]
20. Metabolic reprogramming results in abnormal glycolysis in gastric cancer: a review. Liu Y; Zhang Z; Wang J; Chen C; Tang X; Zhu J; Liu J Onco Targets Ther; 2019; 12():1195-1204. PubMed ID: 30863087 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]