BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 29713666)

  • 1. Mapping the Duodenal Crypt-Villus Transport Axis.
    Barrett KE
    Cell Mol Gastroenterol Hepatol; 2018; 5(4):642-644. PubMed ID: 29713666
    [No Abstract]   [Full Text] [Related]  

  • 2. Acid-base transport in isolated rabbit duodenal villus and crypt cells.
    Ainsworth MA; Amelsberg M; Hogan DL; Isenberg JI
    Scand J Gastroenterol; 1996 Nov; 31(11):1069-77. PubMed ID: 8938899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyclic adenosine-3',5'-monophosphate production is greater in rabbit duodenal crypt than in villus cells.
    Amelsberg M; Amelsberg A; Ainsworth MA; Hogan DL; Isenberg JI
    Scand J Gastroenterol; 1996 Mar; 31(3):233-9. PubMed ID: 8833352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of apical Na(+)-L-glutamine co-transport activity, B(0)-system neutral amino acid co-transporter (B(0)AT1) and angiotensin-converting enzyme 2 along the jejunal crypt-villus axis in young pigs fed a liquid formula.
    Yang C; Yang X; Lackeyram D; Rideout TC; Wang Z; Stoll B; Yin Y; Burrin DG; Fan MZ
    Amino Acids; 2016 Jun; 48(6):1491-508. PubMed ID: 26984322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution of Ca2+-ATPase, ATP-dependent Ca2+-transport, calmodulin and vitamin D-dependent Ca2+-binding protein along the villus-crypt axis in rat duodenum.
    van Corven EJ; Roche C; van Os CH
    Biochim Biophys Acta; 1985 Nov; 820(2):274-82. PubMed ID: 2996600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Na-K-Cl cotransport in villus and crypt cells from rat duodenum.
    McNicholas CM; Brown CD; Turnberg LA
    Am J Physiol; 1994 Dec; 267(6 Pt 1):G1004-11. PubMed ID: 7810646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of isolated duodenal epithelial cells along a crypt-villus axis in rats fed diets with different iron content.
    Oates PS; Thomas C; Morgan EH
    J Gastroenterol Hepatol; 1997 Dec; 12(12):829-38. PubMed ID: 9504894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sucrase-isomaltase gene expression along crypt-villus axis of human small intestine is regulated at level of mRNA abundance.
    Traber PG; Yu L; Wu GD; Judge TA
    Am J Physiol; 1992 Jan; 262(1 Pt 1):G123-30. PubMed ID: 1733257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iron regulatory protein as an endogenous sensor of iron in rat intestinal mucosa. Possible implications for the regulation of iron absorption.
    Schümann K; Moret R; Künzle H; Kühn LC
    Eur J Biochem; 1999 Mar; 260(2):362-72. PubMed ID: 10095770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium transport by rat duodenal villus and crypt basolateral membranes.
    Walters JR; Weiser MM
    Am J Physiol; 1987 Feb; 252(2 Pt 1):G170-7. PubMed ID: 2435163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Localized expression of genes related to carbohydrate and lipid absorption along the crypt-villus axis of rat jejunum.
    Suzuki T; Mochizuki K; Goda T
    Biochim Biophys Acta; 2009 Dec; 1790(12):1624-35. PubMed ID: 19715743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organization of the crypt-villus axis and evolution of its stem cell hierarchy during intestinal development.
    Hermiston ML; Gordon JI
    Am J Physiol; 1995 May; 268(5 Pt 1):G813-22. PubMed ID: 7762665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of diet on glucose transporter site density along the intestinal crypt-villus axis.
    Ferraris RP; Villenas SA; Hirayama BA; Diamond J
    Am J Physiol; 1992 Jun; 262(6 Pt 1):G1060-8. PubMed ID: 1616035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution of ornithine decarboxylase activity induced by 1 alpha,25-dihydroxyvitamin D3 in chick duodenal villus mucosa.
    Takahashi N; Shinki T; Kawate N; Samejima K; Nishii Y; Suda T
    Endocrinology; 1982 Nov; 111(5):1539-45. PubMed ID: 6897034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the chicory inulin efficacy on ameliorating the intestinal morphology and modulating the intestinal electrophysiological properties in broiler chickens.
    Awad WA; Ghareeb K; Böhm J
    J Anim Physiol Anim Nutr (Berl); 2011 Feb; 95(1):65-72. PubMed ID: 20579180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological relevance of cell-specific distribution patterns of CFTR, NKCC1, NBCe1, and NHE3 along the crypt-villus axis in the intestine.
    Jakab RL; Collaco AM; Ameen NA
    Am J Physiol Gastrointest Liver Physiol; 2011 Jan; 300(1):G82-98. PubMed ID: 21030607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gradient for D-glucose and linoleic acid uptake along the crypt-villus axis of rabbit jejunal brush border membrane vesicles.
    Fingerote RJ; Doring KA; Thomson AB
    Lipids; 1994 Feb; 29(2):117-27. PubMed ID: 8152345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The possible role of calcium-binding protein induced by 1 alpha,25-dihydroxyvitamin D3 in the intestinal calcium transport mechanism.
    Shinki T; Takahashi N; Kawate N; Suda T
    Endocrinology; 1982 Nov; 111(5):1546-51. PubMed ID: 6897035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Apical Na+-D-glucose cotransporter 1 (SGLT1) activity and protein abundance are expressed along the jejunal crypt-villus axis in the neonatal pig.
    Yang C; Albin DM; Wang Z; Stoll B; Lackeyram D; Swanson KC; Yin Y; Tappenden KA; Mine Y; Yada RY; Burrin DG; Fan MZ
    Am J Physiol Gastrointest Liver Physiol; 2011 Jan; 300(1):G60-70. PubMed ID: 21030609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ethanol-induced changes in lipid peroxidation of enterocytes across the crypt-villus axis in rats.
    Kalra AK; Gupta S; Turan A; Mahmood S; Mahmood A
    Indian J Gastroenterol; 2010 Jan; 29(1):17-21. PubMed ID: 20373081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.