BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

472 related articles for article (PubMed ID: 29713674)

  • 1. Microfluidic Organ-on-a-Chip Models of Human Intestine.
    Bein A; Shin W; Jalili-Firoozinezhad S; Park MH; Sontheimer-Phelps A; Tovaglieri A; Chalkiadaki A; Kim HJ; Ingber DE
    Cell Mol Gastroenterol Hepatol; 2018; 5(4):659-668. PubMed ID: 29713674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intestinal Models for Personalized Medicine: from Conventional Models to Microfluidic Primary Intestine-on-a-chip.
    Li XG; Chen MX; Zhao SQ; Wang XQ
    Stem Cell Rev Rep; 2022 Aug; 18(6):2137-2151. PubMed ID: 34181185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Erratum: Scalable Fabrication of Stretchable, Dual Channel, Microfluidic Organ Chips.
    J Vis Exp; 2019 May; (147):. PubMed ID: 31067212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Establishment of a Modular Anaerobic Human Intestine Chip.
    Jalili-Firoozinezhad S; Bein A; Gazzaniga FS; Fadel CW; Novak R; Ingber DE
    Methods Mol Biol; 2022; 2373():69-85. PubMed ID: 34520007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pharmacokinetic and pharmacodynamic insights from microfluidic intestine-on-a-chip models.
    Lee SH; Choi N; Sung JH
    Expert Opin Drug Metab Toxicol; 2019 Dec; 15(12):1005-1019. PubMed ID: 31794278
    [No Abstract]   [Full Text] [Related]  

  • 6. Microfluidic Organs-on-a-Chip for Modeling Human Infectious Diseases.
    Wang Y; Wang P; Qin J
    Acc Chem Res; 2021 Sep; 54(18):3550-3562. PubMed ID: 34459199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust Formation of an Epithelial Layer of Human Intestinal Organoids in a Polydimethylsiloxane-Based Gut-on-a-Chip Microdevice.
    Shin W; Ambrosini YM; Shin YC; Wu A; Min S; Koh D; Park S; Kim S; Koh H; Kim HJ
    Front Med Technol; 2020 Aug; 2():. PubMed ID: 33532747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organ-on-Chip Approaches for Intestinal 3D In Vitro Modeling.
    Pimenta J; Ribeiro R; Almeida R; Costa PF; da Silva MA; Pereira B
    Cell Mol Gastroenterol Hepatol; 2022; 13(2):351-367. PubMed ID: 34454168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances in reconstructing intestinal functionalities in vitro: From two/three dimensional-cell culture platforms to human intestine-on-a-chip.
    Wang L; Wu J; Chen J; Dou W; Zhao Q; Han J; Liu J; Su W; Li A; Liu P; An Z; Xu C; Sun Y
    Talanta; 2021 May; 226():122097. PubMed ID: 33676654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering Shelf-Stable Coating for Microfluidic Organ-on-a-Chip Using Bioinspired Catecholamine Polymers.
    Khetani S; Yong KW; Ozhukil Kollath V; Eastick E; Azarmanesh M; Karan K; Sen A; Sanati-Nezhad A
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):6910-6923. PubMed ID: 31971367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling mucus physiology and pathophysiology in human organs-on-chips.
    Izadifar Z; Sontheimer-Phelps A; Lubamba BA; Bai H; Fadel C; Stejskalova A; Ozkan A; Dasgupta Q; Bein A; Junaid A; Gulati A; Mahajan G; Kim S; LoGrande NT; Naziripour A; Ingber DE
    Adv Drug Deliv Rev; 2022 Dec; 191():114542. PubMed ID: 36179916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The crossing and integration between microfluidic technology and 3D printing for organ-on-chips.
    Mi S; Du Z; Xu Y; Sun W
    J Mater Chem B; 2018 Oct; 6(39):6191-6206. PubMed ID: 32254609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human organs-on-chips for disease modelling, drug development and personalized medicine.
    Ingber DE
    Nat Rev Genet; 2022 Aug; 23(8):467-491. PubMed ID: 35338360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organs-on-chips technologies - A guide from disease models to opportunities for drug development.
    Monteduro AG; Rizzato S; Caragnano G; Trapani A; Giannelli G; Maruccio G
    Biosens Bioelectron; 2023 Jul; 231():115271. PubMed ID: 37060819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organoid and Organ-On-A-Chip Systems: New Paradigms for Modeling Neurological and Gastrointestinal Disease.
    Akhtar AA; Sances S; Barrett R; Breunig JJ
    Curr Stem Cell Rep; 2017 Jun; 3(2):98-111. PubMed ID: 28983454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiologically Based Pharmacokinetic and Pharmacodynamic Analysis Enabled by Microfluidically Linked Organs-on-Chips.
    Prantil-Baun R; Novak R; Das D; Somayaji MR; Przekwas A; Ingber DE
    Annu Rev Pharmacol Toxicol; 2018 Jan; 58():37-64. PubMed ID: 29309256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Fabrication and Application Mechanism of Microfluidic Systems for High Throughput Biomedical Screening: A Review.
    Song K; Li G; Zu X; Du Z; Liu L; Hu Z
    Micromachines (Basel); 2020 Mar; 11(3):. PubMed ID: 32168977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modular Microphysiological System for Modeling of Biologic Barrier Function.
    Ishahak M; Hill J; Amin Q; Wubker L; Hernandez A; Mitrofanova A; Sloan A; Fornoni A; Agarwal A
    Front Bioeng Biotechnol; 2020; 8():581163. PubMed ID: 33304889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The translational roadmap of the gut models, focusing on gut-on-chip.
    Malaguarnera G; Graute M; Homs Corbera A
    Open Res Eur; 2021; 1():62. PubMed ID: 37645178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multifunctional microfluidic chip for cancer diagnosis and treatment.
    Guo QR; Zhang LL; Liu JF; Li Z; Li JJ; Zhou WM; Wang H; Li JQ; Liu DY; Yu XY; Zhang JY
    Nanotheranostics; 2021; 5(1):73-89. PubMed ID: 33391976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.