These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
274 related articles for article (PubMed ID: 29713722)
1. Magnetic field effects on coenzyme B Chen JR; Ke SC Phys Chem Chem Phys; 2018 May; 20(18):13068-13074. PubMed ID: 29713722 [TBL] [Abstract][Full Text] [Related]
2. A conformational sampling model for radical catalysis in pyridoxal phosphate- and cobalamin-dependent enzymes. Menon BR; Fisher K; Rigby SE; Scrutton NS; Leys D J Biol Chem; 2014 Dec; 289(49):34161-74. PubMed ID: 25213862 [TBL] [Abstract][Full Text] [Related]
3. Electron transfer in the substrate-dependent suicide inactivation of lysine 5,6-aminomutase. Tang KH; Chang CH; Frey PA Biochemistry; 2001 May; 40(17):5190-9. PubMed ID: 11318641 [TBL] [Abstract][Full Text] [Related]
4. Radical triplets and suicide inhibition in reactions of 4-thia-D- and 4-thia-L-lysine with lysine 5,6-aminomutase. Tang KH; Mansoorabadi SO; Reed GH; Frey PA Biochemistry; 2009 Sep; 48(34):8151-60. PubMed ID: 19634897 [TBL] [Abstract][Full Text] [Related]
5. The role of radicals in enzymatic processes. Frey PA Chem Rec; 2001; 1(4):277-89. PubMed ID: 11893068 [TBL] [Abstract][Full Text] [Related]
6. Isotope effects for deuterium transfer and mutagenesis of Tyr187 provide insight into controlled radical chemistry in adenosylcobalamin-dependent ornithine 4,5-aminomutase. Makins C; Whitelaw DA; Mu C; Walsby CJ; Wolthers KR Biochemistry; 2014 Aug; 53(33):5432-43. PubMed ID: 25100213 [TBL] [Abstract][Full Text] [Related]
7. A locking mechanism preventing radical damage in the absence of substrate, as revealed by the x-ray structure of lysine 5,6-aminomutase. Berkovitch F; Behshad E; Tang KH; Enns EA; Frey PA; Drennan CL Proc Natl Acad Sci U S A; 2004 Nov; 101(45):15870-5. PubMed ID: 15514022 [TBL] [Abstract][Full Text] [Related]
9. Large-scale domain dynamics and adenosylcobalamin reorientation orchestrate radical catalysis in ornithine 4,5-aminomutase. Wolthers KR; Levy C; Scrutton NS; Leys D J Biol Chem; 2010 Apr; 285(18):13942-50. PubMed ID: 20106986 [TBL] [Abstract][Full Text] [Related]
10. Mechanism of radical-based catalysis in the reaction catalyzed by adenosylcobalamin-dependent ornithine 4,5-aminomutase. Wolthers KR; Rigby SE; Scrutton NS J Biol Chem; 2008 Dec; 283(50):34615-25. PubMed ID: 18948256 [TBL] [Abstract][Full Text] [Related]
11. Radical stabilization is crucial in the mechanism of action of lysine 5,6-aminomutase: role of tyrosine-263α as revealed by electron paramagnetic resonance spectroscopy. Chen YH; Maity AN; Pan YC; Frey PA; Ke SC J Am Chem Soc; 2011 Nov; 133(43):17152-5. PubMed ID: 21939264 [TBL] [Abstract][Full Text] [Related]
12. Characterization of an allylic analogue of the 5'-deoxyadenosyl radical: an intermediate in the reaction of lysine 2,3-aminomutase. Magnusson OT; Reed GH; Frey PA Biochemistry; 2001 Jul; 40(26):7773-82. PubMed ID: 11425303 [TBL] [Abstract][Full Text] [Related]
13. S-Adenosylmethionine-dependent reduction of lysine 2,3-aminomutase and observation of the catalytically functional iron-sulfur centers by electron paramagnetic resonance. Lieder KW; Booker S; Ruzicka FJ; Beinert H; Reed GH; Frey PA Biochemistry; 1998 Feb; 37(8):2578-85. PubMed ID: 9485408 [TBL] [Abstract][Full Text] [Related]
14. Lysine 2,3-aminomutase: is adenosylmethionine a poor man's adenosylcobalamin? Frey PA FASEB J; 1993 May; 7(8):662-70. PubMed ID: 8500691 [TBL] [Abstract][Full Text] [Related]
15. Time-resolved measurements of the photolysis and recombination of adenosylcobalamin bound to glutamate mutase. Sension RJ; Harris DA; Stickrath A; Cole AG; Fox CC; Marsh EN J Phys Chem B; 2005 Sep; 109(38):18146-52. PubMed ID: 16853330 [TBL] [Abstract][Full Text] [Related]
16. Mechanism-based inhibition reveals transitions between two conformational states in the action of lysine 5,6-aminomutase: a combination of electron paramagnetic resonance spectroscopy, electron nuclear double resonance spectroscopy, and density functional theory study. Chen YH; Maity AN; Frey PA; Ke SC J Am Chem Soc; 2013 Jan; 135(2):788-94. PubMed ID: 23231091 [TBL] [Abstract][Full Text] [Related]
17. Coexpression, purification and characterization of the E and S subunits of coenzyme B(12) and B(6) dependent Clostridium sticklandii D-ornithine aminomutase in Escherichia coli. Chen HP; Hsui FC; Lin LY; Ren CT; Wu SH Eur J Biochem; 2004 Nov; 271(21):4293-7. PubMed ID: 15511235 [TBL] [Abstract][Full Text] [Related]
18. Coupling of cobalt-carbon bond homolysis and hydrogen atom abstraction in adenosylcobalamin-dependent glutamate mutase. Marsh EN; Ballou DP Biochemistry; 1998 Aug; 37(34):11864-72. PubMed ID: 9718309 [TBL] [Abstract][Full Text] [Related]
19. Stabilisation of methylene radicals by cob(II)alamin in coenzyme B12 dependent mutases. Buckel W; Kratky C; Golding BT Chemistry; 2005 Dec; 12(2):352-62. PubMed ID: 16304645 [TBL] [Abstract][Full Text] [Related]
20. Photolysis of adenosylcobalamin and radical pair recombination in ethanolamine ammonia-lyase probed on the micro- to millisecond time scale by using time-resolved optical absorption spectroscopy. Robertson WD; Warncke K Biochemistry; 2009 Jan; 48(1):140-7. PubMed ID: 19072291 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]