BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 29713807)

  • 1. Throughfall, stemflow, and interception characteristics of coniferous forest ecosystems in the western black sea region of Turkey (Daday example).
    Aydın M; Güneş Şen S; Celik S
    Environ Monit Assess; 2018 Apr; 190(5):316. PubMed ID: 29713807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interception loss, throughfall and stemflow chemistry in pine and oak forests in northeastern Mexico.
    Cantú Silva I; González Rodríguez H
    Tree Physiol; 2001 Aug; 21(12-13):1009-13. PubMed ID: 11498348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [A preliminary study on the chemical properties of precipitation, throughfall, stemflow and surface run-off in major forest types at Dinghushan under acid deposition].
    Liu J; Zhang D; Zhou G; Wen D; Zhang Q
    Ying Yong Sheng Tai Xue Bao; 2003 Aug; 14(8):1223-8. PubMed ID: 14655347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variation characteristics of nitrogen concentrations through forest hydrologic subcycles in various forests across mainland China.
    Sun S; Wang Y; Wang Y; Zhang H; Yu L; Liu Y; Zhu J
    Environ Technol; 2015; 36(13-16):2001-12. PubMed ID: 25686284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimating Chemical Exchange between Atmospheric Deposition and Forest Canopy in Guizhou, China.
    Li W; Gao F; Liao X
    J Environ Qual; 2013; 42(2):332-40. PubMed ID: 23673825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of forest type on throughfall deposition and seepage flux: a review.
    De Schrijver A; Geudens G; Augusto L; Staelens J; Mertens J; Wuyts K; Gielis L; Verheyen K
    Oecologia; 2007 Sep; 153(3):663-74. PubMed ID: 17629749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Species diversity patterns in managed Scots pine stands in ancient forest sites.
    Stefańska-Krzaczek E; Staniaszek-Kik M; Szczepańska K; Szymura TH
    PLoS One; 2019; 14(7):e0219620. PubMed ID: 31295314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling potential distribution and above-ground biomass of Scots pine (Pinus sylvestris L.) forests in the Inner Anatolian Region, Türkiye.
    Bulut S; Aytaş İ
    Environ Monit Assess; 2023 Nov; 195(12):1471. PubMed ID: 37964125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Rainfall process and nitrogen input in three typical forests of Jinyun Mountain].
    Sun SQ; Wang YJ; Wang YQ; Zhang HL; Yu L; Liu J
    Huan Jing Ke Xue; 2014 Mar; 35(3):1081-90. PubMed ID: 24881400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Dynamics of total organic carbon (TOC) in hydrological processes in coniferous and broad-leaved mixed forest of Dinghushan].
    Yin G; Zhou G; Zhang D; Wang X; Chu G; Liu Y
    Ying Yong Sheng Tai Xue Bao; 2005 Sep; 16(9):1655-60. PubMed ID: 16355778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Forest vulnerability to extreme climatic events in Romanian Scots pine forests.
    Sidor CG; Camarero JJ; Popa I; Badea O; Apostol EN; Vlad R
    Sci Total Environ; 2019 Aug; 678():721-727. PubMed ID: 31078863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of stand density and canopy structure on the germination and growth of Scots pine (Pinus sylvestris L.) seedlings.
    Kara F; Topaçoğlu O
    Environ Monit Assess; 2018 Nov; 190(12):749. PubMed ID: 30498861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Rainffall interception model of forest canopy: a preliminary study].
    Guo M; Yu P; Wang Y; Shen Z; Shi Z; Du A; He C
    Ying Yong Sheng Tai Xue Bao; 2005 Sep; 16(9):1633-7. PubMed ID: 16355774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential implications of shortened rotation length for forest birds, bryophytes, lichens and vascular plants: An example from southern Swedish production forests.
    Petersson L; Lariviere D; Holmström E; Lindbladh M; Felton A
    PLoS One; 2023; 18(12):e0289835. PubMed ID: 38100411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Canopy interception of Pinus tabulaeformis plantation on Longzhong Loess Plateau, Northwest China: characteristics and simulation].
    Fang SM; Zhao CY; Jian SQ; Yu K
    Ying Yong Sheng Tai Xue Bao; 2013 Jun; 24(6):1509-16. PubMed ID: 24066533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Half a century of Scots pine forest ecosystem monitoring reveals long-term effects of atmospheric deposition and climate change.
    Prietzel J; Falk W; Reger B; Uhl E; Pretzsch H; Zimmermann L
    Glob Chang Biol; 2020 Oct; 26(10):5796-5815. PubMed ID: 32645233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growing season water balance of an inner alpine Scots pine (
    Wieser G; Gruber A; Oberhuber W
    IForest; 2018; 11():469-475. PubMed ID: 30079155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review and evaluation of forest canopy epiphyte roles in the partitioning and chemical alteration of precipitation.
    Van Stan JT; Pypker TG
    Sci Total Environ; 2015 Dec; 536():813-824. PubMed ID: 26254081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of harvesting methods and forest floor displacement on nutrient stock of Scots pine ecosystems in the Central Anatolia Region of Turkey.
    Güner ŞT; Yücel E; Çömez A
    Environ Monit Assess; 2021 Jul; 193(8):533. PubMed ID: 34324011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Canopy interception of sub-alpine dark coniferous communities in western Sichuan, China].
    Lü YL; Liu SR; Sun PS; Liu XL; Zhang RP
    Ying Yong Sheng Tai Xue Bao; 2007 Nov; 18(11):2398-405. PubMed ID: 18260438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.