These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 29713843)

  • 1. A co-utilization strategy to consume glycerol and monosaccharides by Rhizopus strains for fumaric acid production.
    Kowalczyk S; Komoń-Janczara E; Glibowska A; Kuzdraliński A; Czernecki T; Targoński Z
    AMB Express; 2018 Apr; 8(1):69. PubMed ID: 29713843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of fumaric acid from biodiesel-derived crude glycerol by Rhizopus arrhizus.
    Zhou Y; Nie K; Zhang X; Liu S; Wang M; Deng L; Wang F; Tan T
    Bioresour Technol; 2014 Jul; 163():48-53. PubMed ID: 24787316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Co-fermentation of a mixture of glucose and xylose to fumaric acid by Rhizopus arrhizus RH 7-13-9.
    Liu H; Hu H; Jin Y; Yue X; Deng L; Wang F; Tan T
    Bioresour Technol; 2017 Jun; 233():30-33. PubMed ID: 28258993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of hydrolytic liquid from dried distiller's grains with solubles and fumaric acid fermentation by Rhizopus arrhizus RH 7-13.
    Liu H; Yue X; Jin Y; Wang M; Deng L; Wang F; Tan T
    J Environ Manage; 2017 Oct; 201():172-176. PubMed ID: 28662421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of glycerol metabolic pathway by evolutionary engineering of Rhizopus oryzae to strengthen the fumaric acid biosynthesis from crude glycerol.
    Huang D; Wang R; Du W; Wang G; Xia M
    Bioresour Technol; 2015 Nov; 196():263-72. PubMed ID: 26253910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fumaric acid production using alternate fermentation mode by immobilized Rhizopus oryzae-a greener production strategy.
    Sebastian J; Dominguez KV; Brar SK; Rouissi T
    Chemosphere; 2021 Oct; 281():130858. PubMed ID: 34020187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sustainable carbon sources for microbial organic acid production with filamentous fungi.
    Dörsam S; Fesseler J; Gorte O; Hahn T; Zibek S; Syldatk C; Ochsenreither K
    Biotechnol Biofuels; 2017; 10():242. PubMed ID: 29075326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of Primary Metabolites by
    Zaveri A; Edwards J; Rochfort S
    Molecules; 2022 Oct; 27(21):. PubMed ID: 36364023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of fumaric acid production by Rhizopus oryzae using a two-stage dissolved oxygen control strategy.
    Fu YQ; Li S; Chen Y; Xu Q; Huang H; Sheng XY
    Appl Biochem Biotechnol; 2010 Oct; 162(4):1031-8. PubMed ID: 19936636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A metabolic-based approach to improve xylose utilization for fumaric acid production from acid pretreated wheat bran by Rhizopus oryzae.
    Wang G; Huang D; Li Y; Wen J; Jia X
    Bioresour Technol; 2015 Mar; 180():119-27. PubMed ID: 25594507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lactic acid production from xylose by the fungus Rhizopus oryzae.
    Maas RH; Bakker RR; Eggink G; Weusthuis RA
    Appl Microbiol Biotechnol; 2006 Oct; 72(5):861-8. PubMed ID: 16528511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Process characterization and influence of alternative carbon sources and carbon-to-nitrogen ratio on organic acid production by Aspergillus oryzae DSM1863.
    Ochsenreither K; Fischer C; Neumann A; Syldatk C
    Appl Microbiol Biotechnol; 2014 Jun; 98(12):5449-60. PubMed ID: 24604500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Food Waste Fermentation to Fumaric Acid by Rhizopus arrhizus RH7-13.
    Liu H; Ma J; Wang M; Wang W; Deng L; Nie K; Yue X; Wang F; Tan T
    Appl Biochem Biotechnol; 2016 Dec; 180(8):1524-1533. PubMed ID: 27387957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. L(+)-lactic acid production by co-fermentation of glucose and xylose with Rhizopus oryzae obtained by low-energy ion beam irradiation.
    Wang P; Li J; Wang L; Tang ML; Yu ZL; Zheng ZM
    J Ind Microbiol Biotechnol; 2009 Nov; 36(11):1363-8. PubMed ID: 19653020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-stage utilization of corn straw by Rhizopus oryzae for fumaric acid production.
    Xu Q; Li S; Fu Y; Tai C; Huang H
    Bioresour Technol; 2010 Aug; 101(15):6262-4. PubMed ID: 20236819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Capability Enhancement of Fumaric Acid Production by Rhizopus arrhizus Through Carbon-Nitrogen Sources Coordination.
    Xing H; Liu H; Zhang Y; Yu Y; Huang X; Xiao Q; Deng L; Wang F
    Appl Biochem Biotechnol; 2021 Apr; 193(4):1231-1237. PubMed ID: 33237556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High production of fumaric acid from xylose by newly selected strain Rhizopus arrhizus RH 7-13-9#.
    Liu H; Wang W; Deng L; Wang F; Tan T
    Bioresour Technol; 2015 Jun; 186():348-350. PubMed ID: 25862014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effects of nitrogen-limitation on xylose metabolism and key enzymes activity in Rhizopus oryzae].
    Yu Y; Xu Q; Li S
    Wei Sheng Wu Xue Bao; 2013 Nov; 53(11):1189-94. PubMed ID: 24617260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptome analysis of Rhizopus oryzae in response to xylose during fumaric acid production.
    Xu Q; Liu Y; Li S; Jiang L; Huang H; Wen J
    Bioprocess Biosyst Eng; 2016 Aug; 39(8):1267-80. PubMed ID: 27170374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-production of fumaric acid and chitin from a nitrogen-rich lignocellulosic material - dairy manure - using a pelletized filamentous fungus Rhizopus oryzae ATCC 20344.
    Liao W; Liu Y; Frear C; Chen S
    Bioresour Technol; 2008 Sep; 99(13):5859-66. PubMed ID: 18006305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.