These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 29714134)

  • 1. Medicinal Chemistry of Potassium Channel Modulators: An Update of Recent Progress (2011-2017).
    Vyas VK; Parikh P; Ramani J; Ghate M
    Curr Med Chem; 2019; 26(12):2062-2084. PubMed ID: 29714134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potassium channel blockers and openers as CNS neurologic therapeutic agents.
    Judge SI; Smith PJ; Stewart PE; Bever CT
    Recent Pat CNS Drug Discov; 2007 Nov; 2(3):200-28. PubMed ID: 18221232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. KATP channel openers: structure-activity relationships and therapeutic potential.
    Mannhold R
    Med Res Rev; 2004 Mar; 24(2):213-66. PubMed ID: 14705169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Triazolo and imidazo dihydropyrazolopyrimidine potassium channel antagonists.
    Finlay HJ; Jiang J; Caringal Y; Kover A; Conder ML; Xing D; Levesque P; Harper T; Hsueh MM; Atwal K; Blanar M; Wexler R; Lloyd J
    Bioorg Med Chem Lett; 2013 Mar; 23(6):1743-7. PubMed ID: 23414837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Current strategies for the discovery of K+ channel modulators.
    Ye D; Wang J; Yu K; Zhou Y; Jiang H; Chen K; Liu H
    Curr Top Med Chem; 2009; 9(4):348-61. PubMed ID: 19442206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potassium channel openers as potential therapeutic weapons in ion channel disease.
    Lawson K
    Kidney Int; 2000 Mar; 57(3):838-45. PubMed ID: 10720937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pathophysiological Role of Mitochondrial Potassium Channels and their Modulation by Drugs.
    Citi V; Calderone V; Martelli A; Breschi MC; Testai L
    Curr Med Chem; 2018; 25(23):2661-2674. PubMed ID: 29022502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potassium channels: structures, diseases, and modulators.
    Tian C; Zhu R; Zhu L; Qiu T; Cao Z; Kang T
    Chem Biol Drug Des; 2014 Jan; 83(1):1-26. PubMed ID: 24119115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of agitoxin2, charybdotoxin, and iberiotoxin with potassium channels: selectivity between voltage-gated and Maxi-K channels.
    Gao YD; Garcia ML
    Proteins; 2003 Aug; 52(2):146-54. PubMed ID: 12833539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and evaluation of pyrazolopyrimidines as KCNQ channel modulators.
    Osuma AT; Xu X; Wang Z; Van Camp JA; Freiberg GM
    Bioorg Med Chem Lett; 2019 Oct; 29(19):126603. PubMed ID: 31416667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of different types of K+ channel modulators on the spontaneous myogenic contraction of guinea-pig urinary bladder smooth muscle.
    Imai T; Okamoto T; Yamamoto Y; Tanaka H; Koike K; Shigenobu K; Tanaka Y
    Acta Physiol Scand; 2001 Nov; 173(3):323-33. PubMed ID: 11736694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmacology of cardiac potassium channels.
    Li GR; Dong MQ
    Adv Pharmacol; 2010; 59():93-134. PubMed ID: 20933200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovery of Small Molecule Renal Outer Medullary Potassium (ROMK) Channel Inhibitors: A Brief History of Medicinal Chemistry Approaches To Develop Novel Diuretic Therapeutics.
    Aretz CD; Vadukoot AK; Hopkins CR
    J Med Chem; 2019 Oct; 62(19):8682-8694. PubMed ID: 31034224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adenosine Triphosphate-Sensitive Potassium Channel Kir Subunits Implicated in Cardioprotection by Diazoxide.
    Henn MC; Janjua MB; Kanter EM; Makepeace CM; Schuessler RB; Nichols CG; Lawton JS
    J Am Heart Assoc; 2015 Aug; 4(8):e002016. PubMed ID: 26304939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. KCNT1 Channel Blockers: A Medicinal Chemistry Perspective.
    Di Matteo F; Mancuso F; Turcio R; Ciaglia T; Stagno C; Di Chio C; Campiglia P; Bertamino A; Giofrè SV; Ostacolo C; Iraci N
    Molecules; 2024 Jun; 29(12):. PubMed ID: 38931004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Di-substituted cyclohexyl derivatives bind to two identical sites with positive cooperativity on the voltage-gated potassium channel, K(v)1.3.
    Schmalhofer WA; Slaughter RS; Matyskiela M; Felix JP; Tang YS; Rupprecht K; Kaczorowski GJ; Garcia ML
    Biochemistry; 2003 Apr; 42(16):4733-43. PubMed ID: 12705837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. K(v)7 channels: function, pharmacology and channel modulators.
    Dalby-Brown W; Hansen HH; Korsgaard MP; Mirza N; Olesen SP
    Curr Top Med Chem; 2006; 6(10):999-1023. PubMed ID: 16787276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TASK Channels Pharmacology: New Challenges in Drug Design.
    Bedoya M; Rinné S; Kiper AK; Decher N; González W; Ramírez D
    J Med Chem; 2019 Nov; 62(22):10044-10058. PubMed ID: 31260312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complexes of Peptide Blockers with Kv1.6 Pore Domain: Molecular Modeling and Studies with KcsA-Kv1.6 Channel.
    Nekrasova OV; Volyntseva AD; Kudryashova KS; Novoseletsky VN; Lyapina EA; Illarionova AV; Yakimov SA; Korolkova YV; Shaitan KV; Kirpichnikov MP; Feofanov AV
    J Neuroimmune Pharmacol; 2017 Jun; 12(2):260-276. PubMed ID: 27640211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atrial-selective K
    Ravens U
    Can J Physiol Pharmacol; 2017 Nov; 95(11):1313-1318. PubMed ID: 28738160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.