These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 29714181)

  • 1. The fractional Fourier transform as a simulation tool for lens-based X-ray microscopy.
    Pedersen AF; Simons H; Detlefs C; Poulsen HF
    J Synchrotron Radiat; 2018 May; 25(Pt 3):717-728. PubMed ID: 29714181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fractional Fourier transform of flat-topped multi-Gaussian beams.
    Gao YQ; Zhu BQ; Liu DZ; Lin ZQ
    J Opt Soc Am A Opt Image Sci Vis; 2010 Feb; 27(2):358-65. PubMed ID: 20126248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulating and optimizing compound refractive lens-based X-ray microscopes.
    Simons H; Ahl SR; Poulsen HF; Detlefs C
    J Synchrotron Radiat; 2017 Mar; 24(Pt 2):392-401. PubMed ID: 28244432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanofocusing with aberration-corrected rotationally parabolic refractive X-ray lenses.
    Seiboth F; Wittwer F; Scholz M; Kahnt M; Seyrich M; Schropp A; Wagner U; Rau C; Garrevoet J; Falkenberg G; Schroer CG
    J Synchrotron Radiat; 2018 Jan; 25(Pt 1):108-115. PubMed ID: 29271759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correction of the X-ray wavefront from compound refractive lenses using 3D printed refractive structures.
    Dhamgaye V; Laundy D; Baldock S; Moxham T; Sawhney K
    J Synchrotron Radiat; 2020 Nov; 27(Pt 6):1518-1527. PubMed ID: 33147177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Partially coherent X-ray wavefront propagation simulations including grazing-incidence focusing optics.
    Canestrari N; Chubar O; Reininger R
    J Synchrotron Radiat; 2014 Sep; 21(Pt 5):1110-21. PubMed ID: 25178000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dispersion compensation in Fourier domain optical coherence tomography using the fractional Fourier transform.
    Lippok N; Coen S; Nielsen P; Vanholsbeeck F
    Opt Express; 2012 Oct; 20(21):23398-413. PubMed ID: 23188304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fractional Fourier transforms, symmetrical lens systems, and their cardinal planes.
    Moreno I; Sánchez-López MM; Ferreira C; Mateos F
    J Opt Soc Am A Opt Image Sci Vis; 2007 Jul; 24(7):1930-6. PubMed ID: 17728815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of background and modulation on parameter estimation using fractional Fourier transform and its solutions.
    Wu JM; Lu MF; Guo Z; Tao R
    Appl Opt; 2019 May; 58(13):3528-3538. PubMed ID: 31044850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simplified fractional Fourier transforms.
    Pei SC; Ding JJ
    J Opt Soc Am A Opt Image Sci Vis; 2000 Dec; 17(12):2355-67. PubMed ID: 11140496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Propagation of Bessel-Gaussian beams through a double-apertured fractional Fourier transform optical system.
    Tang B; Jiang C; Zhu H
    J Opt Soc Am A Opt Image Sci Vis; 2012 Aug; 29(8):1728-33. PubMed ID: 23201891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical excitation fractional Fourier transform (FrFT) based enhanced thermal-wave radar imaging (TWRI).
    Wang F; Wang Y; Liu J; Wang Y
    Opt Express; 2018 Aug; 26(17):21403-21417. PubMed ID: 30130849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling phase imperfections in compound refractive lenses.
    Celestre R; Berujon S; Roth T; Sanchez Del Rio M; Barrett R
    J Synchrotron Radiat; 2020 Mar; 27(Pt 2):305-318. PubMed ID: 32153269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parameter estimation of linear frequency modulation signals based on sampling theorem and fractional broadening.
    Liu X; Han J; Wang C; Xiao B
    Rev Sci Instrum; 2019 Jan; 90(1):014702. PubMed ID: 30709189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detecting spatial chirp signals by Luneburg lens based transformation medium.
    Dong WX; Lai YY; Hu J
    Opt Express; 2022 Mar; 30(6):9773-9789. PubMed ID: 35299394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rocking curve and spatial coherence properties of a long X-ray compound refractive lens.
    Kohn VG
    J Synchrotron Radiat; 2018 Nov; 25(Pt 6):1634-1641. PubMed ID: 30407172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short-time fractional Fourier methods for the time-frequency representation of chirp signals.
    Capus C; Brown K
    J Acoust Soc Am; 2003 Jun; 113(6):3253-63. PubMed ID: 12822798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fractional Fourier transform of Lorentz-Gauss beams.
    Zhou G
    J Opt Soc Am A Opt Image Sci Vis; 2009 Feb; 26(2):350-5. PubMed ID: 19183688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-crystal diamond refractive lens for focusing X-rays in two dimensions.
    Antipov S; Baryshev SV; Butler JE; Antipova O; Liu Z; Stoupin S
    J Synchrotron Radiat; 2016 Jan; 23(1):163-8. PubMed ID: 26698059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An automated approach to the alignment of compound refractive lenses.
    Breckling S; Kozioziemski B; Dresselhaus-Marais L; Gonzalez A; Williams A; Simons H; Chow P; Howard M
    J Synchrotron Radiat; 2022 Jul; 29(Pt 4):947-956. PubMed ID: 35787560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.