BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 29714302)

  • 1. DERS substrate based on NERS-SERS interaction in integrated microfluidic detection.
    Xiao C; Chen Z; Qin M; Zhang D; Fan L
    Appl Opt; 2018 Apr; 57(12):3172-3179. PubMed ID: 29714302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: effects of size of Ag nanoparticles and the excitation wavelength.
    Kim K; Choi JY; Lee HB; Shin KS
    J Chem Phys; 2011 Sep; 135(12):124705. PubMed ID: 21974550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of Explosives by SERS Platform Using Metal Nanogap Substrates.
    Adhikari S; Ampadu EK; Kim M; Noh D; Oh E; Lee D
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34451009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies.
    Chu Y; Banaee MG; Crozier KB
    ACS Nano; 2010 May; 4(5):2804-10. PubMed ID: 20429521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface-Enhanced Raman Scattering and Fluorescence on Gold Nanogratings.
    Chang YC; Huang BH; Lin TH
    Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32316451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface enhanced Raman scattering substrate with metallic nanogap array fabricated by etching the assembled polystyrene spheres array.
    Xia L; Yang Z; Yin S; Guo W; Li S; Xie W; Huang D; Deng Q; Shi H; Cui H; Du C
    Opt Express; 2013 May; 21(9):11349-55. PubMed ID: 23669991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Signal enhancement of surface enhanced Raman scattering and surface enhanced resonance Raman scattering using in situ colloidal synthesis in microfluidics.
    Wilson R; Bowden SA; Parnell J; Cooper JM
    Anal Chem; 2010 Mar; 82(5):2119-23. PubMed ID: 20121214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vapor phase detection of explosives by surface enhanced Raman scattering under ambient conditions with metal nanogap structures.
    Adhikari S; Noh D; Kim M; Ahn D; Jang Y; Oh E; Lee D
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Apr; 311():123996. PubMed ID: 38350410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmonic nanogap-enhanced Raman scattering using a resonant nanodome array.
    Wu HY; Choi CJ; Cunningham BT
    Small; 2012 Sep; 8(18):2878-85. PubMed ID: 22761112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Attomolar Sensing Based on Liquid Interface-Assisted Surface-Enhanced Raman Scattering in Microfluidic Chip by Femtosecond Laser Processing.
    Bai S; Serien D; Ma Y; Obata K; Sugioka K
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):42328-42338. PubMed ID: 32799517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward microfluidic SERS and EC-SERS applications via tunable gold films over nanospheres.
    Falamas A; Cuibus D; Tosa N; Brezestean I; Muntean CM; Milenko K; Vereshchagina E; Moldovan R; Bodoki E; Farcau C
    Discov Nano; 2023 May; 18(1):73. PubMed ID: 37382835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SERS-active substrate based on gap surface plasmon polaritons.
    Kim HC; Cheng X
    Opt Express; 2009 Sep; 17(20):17234-41. PubMed ID: 19907510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy.
    Wei H; Xu H
    Nanoscale; 2013 Nov; 5(22):10794-805. PubMed ID: 24113688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergetic SERS Enhancement in a Metal-Like/Metal Double-Shell Structure for Sensitive and Stable Application.
    Ban R; Yu Y; Zhang M; Yin J; Xu B; Wu DY; Wu M; Zhang Z; Tai H; Li J; Kang J
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13564-13570. PubMed ID: 28349691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Localized flexible integration of high-efficiency surface enhanced Raman scattering (SERS) monitors into microfluidic channels.
    Xu BB; Ma ZC; Wang L; Zhang R; Niu LG; Yang Z; Zhang YL; Zheng WH; Zhao B; Xu Y; Chen QD; Xia H; Sun HB
    Lab Chip; 2011 Oct; 11(19):3347-51. PubMed ID: 21863148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silver overlayer-modified surface-enhanced Raman scattering-active gold substrates for potential applications in trace detection of biochemical species.
    Ou KL; Hsu TC; Liu YC; Yang KH; Tsai HY
    Anal Chim Acta; 2014 Jan; 806():188-96. PubMed ID: 24331055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noble-Metal-Free Materials for Surface-Enhanced Raman Spectroscopy Detection.
    Tan X; Melkersson J; Wu S; Wang L; Zhang J
    Chemphyschem; 2016 Sep; 17(17):2630-9. PubMed ID: 27191682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trace detection of cyanide based on SERS effect of Ag nanoplate-built hollow microsphere arrays.
    Liu G; Cai W; Kong L; Duan G; Li Y; Wang J; Cheng Z
    J Hazard Mater; 2013 Mar; 248-249():435-41. PubMed ID: 23416488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localized surface plasmons, surface plasmon polaritons, and their coupling in 2D metallic array for SERS.
    Du L; Zhang X; Mei T; Yuan X
    Opt Express; 2010 Feb; 18(3):1959-65. PubMed ID: 20174025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wafer-scale double-layer stacked Au/Al2O3@Au nanosphere structure with tunable nanospacing for surface-enhanced Raman scattering.
    Hu Z; Liu Z; Li L; Quan B; Li Y; Li J; Gu C
    Small; 2014 Oct; 10(19):3933-42. PubMed ID: 24995658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.