These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 29714944)

  • 41. [Studies on poly-D, L-lactide acid scaffolds modified by conjugation of bioactive peptides via ammonia plasma treatment].
    Xu Z; Chen J; Yin S; Zhu Q; Li T; Zha D; Jiang X; Zhang X
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2010 Nov; 24(11):1376-85. PubMed ID: 21226366
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Rapid development of dual porous poly(lactic acid) foam using fused deposition modeling (FDM) 3D printing for medical scaffold application.
    Choi WJ; Hwang KS; Kwon HJ; Lee C; Kim CH; Kim TH; Heo SW; Kim JH; Lee JY
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110693. PubMed ID: 32204007
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Porous polymer scaffolds surface-modified with arginine-glycine-aspartic acid enhance bone cell attachment and differentiation in vitro.
    Hu Y; Winn SR; Krajbich I; Hollinger JO
    J Biomed Mater Res A; 2003 Mar; 64(3):583-90. PubMed ID: 12579573
    [TBL] [Abstract][Full Text] [Related]  

  • 44. In vitro evaluation of the compatibility of a novel collagen-heparan sulfate biological scaffold with olfactory ensheathing cells.
    Tang ZP; Liu N; Li ZW; Xie XW; Chen Y; Shi YH; Zeng WG; Wang SX; Chen J; Yang J; Pan DJ
    Chin Med J (Engl); 2010 May; 123(10):1299-304. PubMed ID: 20529585
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Amniotic epithelial stem cell biocompatibility for electrospun poly(lactide-co-glycolide), poly(ε-caprolactone), poly(lactic acid) scaffolds.
    Russo V; Tammaro L; Di Marcantonio L; Sorrentino A; Ancora M; Valbonetti L; Turriani M; Martelli A; Cammà C; Barboni B
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():321-9. PubMed ID: 27612719
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Porous poly (DL-lactic acid) modified chitosan-gelatin scaffolds for tissue engineering.
    Liu H; Yao F; Zhou Y; Yao K; Mei D; Cui L; Cao Y
    J Biomater Appl; 2005 Apr; 19(4):303-22. PubMed ID: 15788427
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Porous nano-HA/collagen/PLLA scaffold containing chitosan microspheres for controlled delivery of synthetic peptide derived from BMP-2.
    Niu X; Feng Q; Wang M; Guo X; Zheng Q
    J Control Release; 2009 Mar; 134(2):111-7. PubMed ID: 19100794
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In vitro and in vivo evaluation of porous PCL-PLLA 3D polymer scaffolds fabricated via salt leaching method for bone tissue engineering applications.
    Sadiasa A; Nguyen TH; Lee BT
    J Biomater Sci Polym Ed; 2014; 25(2):150-67. PubMed ID: 24138179
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A dual-application poly (dl-lactic-co-glycolic) acid (PLGA)-chitosan composite scaffold for potential use in bone tissue engineering.
    Boukari Y; Qutachi O; Scurr DJ; Morris AP; Doughty SW; Billa N
    J Biomater Sci Polym Ed; 2017 Nov; 28(16):1966-1983. PubMed ID: 28777694
    [TBL] [Abstract][Full Text] [Related]  

  • 50. PHBV microspheres--PLGA matrix composite scaffold for bone tissue engineering.
    Huang W; Shi X; Ren L; Du C; Wang Y
    Biomaterials; 2010 May; 31(15):4278-85. PubMed ID: 20199806
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mechanical properties evolution of a PLGA-PLCL composite scaffold for ligament tissue engineering under static and cyclic traction-torsion in vitro culture conditions.
    Kahn CJ; Ziani K; Zhang YM; Liu J; Tran N; Babin J; de Isla N; Six JL; Wang X
    J Biomater Sci Polym Ed; 2013; 24(8):899-911. PubMed ID: 23647247
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Preparation, characterization and evaluation of cellulose nanocrystal/poly(lactic acid) in situ nanocomposite scaffolds for tissue engineering.
    Luo W; Cheng L; Yuan C; Wu Z; Yuan G; Hou M; Chen JY; Luo C; Li W
    Int J Biol Macromol; 2019 Aug; 134():469-479. PubMed ID: 31078594
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Regeneration of a goat femoral head using a tissue-specific, biphasic scaffold fabricated with CAD/CAM technology.
    Ding C; Qiao Z; Jiang W; Li H; Wei J; Zhou G; Dai K
    Biomaterials; 2013 Sep; 34(28):6706-16. PubMed ID: 23773816
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Photo-initiated grafting of gelatin/N-maleic acyl-chitosan to enhance endothelial cell adhesion, proliferation and function on PLA surface.
    Zhu A; Zhao F; Ma T
    Acta Biomater; 2009 Jul; 5(6):2033-44. PubMed ID: 19299215
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Rapid manufacturing of degradable porous polymer bone scaffold].
    Shi T; Yue X; Xiong Z; Zhang R; Yan Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2002 Jun; 19(2):348-9. PubMed ID: 12224317
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Adhesion of fibroblast cells on thin films representing surfaces of polymeric scaffolds of human urethra rationalized by molecular models of integrin binding: cell adhesion on polymeric scaffolds for regenerative medicine.
    Braccini S; Pecorini G; Chiellini F; Bakos D; Miertus S; Frecer V
    J Biotechnol; 2020 Dec; 324():233-238. PubMed ID: 33157195
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bone augmentation using a highly porous PLGA/β-TCP scaffold containing fibroblast growth factor-2.
    Yoshida T; Miyaji H; Otani K; Inoue K; Nakane K; Nishimura H; Ibara A; Shimada A; Ogawa K; Nishida E; Sugaya T; Sun L; Fugetsu B; Kawanami M
    J Periodontal Res; 2015 Apr; 50(2):265-73. PubMed ID: 24966062
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Porogen-induced surface modification of nano-fibrous poly(L-lactic acid) scaffolds for tissue engineering.
    Liu X; Won Y; Ma PX
    Biomaterials; 2006 Jul; 27(21):3980-7. PubMed ID: 16580063
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Polypyrrole-coated electrospun poly(lactic acid) fibrous scaffold: effects of coating on electrical conductivity and neural cell growth.
    Sudwilai T; Ng JJ; Boonkrai C; Israsena N; Chuangchote S; Supaphol P
    J Biomater Sci Polym Ed; 2014; 25(12):1240-52. PubMed ID: 24933469
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Functionalisation and surface modification of electrospun polylactic acid scaffold for tissue engineering.
    Hoveizi E; Nabiuni M; Parivar K; Rajabi-Zeleti S; Tavakol S
    Cell Biol Int; 2014 Jan; 38(1):41-9. PubMed ID: 24030862
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.