These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 29714944)

  • 61. Characterization of polylactic acid-polyglycolic acid composites for cartilage tissue engineering.
    Moran JM; Pazzano D; Bonassar LJ
    Tissue Eng; 2003 Feb; 9(1):63-70. PubMed ID: 12625955
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A viscoelastic chitosan-modified three-dimensional porous poly(L-lactide-co-ε-caprolactone) scaffold for cartilage tissue engineering.
    Li C; Wang L; Yang Z; Kim G; Chen H; Ge Z
    J Biomater Sci Polym Ed; 2012; 23(1-4):405-24. PubMed ID: 21310105
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications.
    Li WJ; Cooper JA; Mauck RL; Tuan RS
    Acta Biomater; 2006 Jul; 2(4):377-85. PubMed ID: 16765878
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A biodegradable porous composite scaffold of PGA/beta-TCP for bone tissue engineering.
    Cao H; Kuboyama N
    Bone; 2010 Feb; 46(2):386-95. PubMed ID: 19800045
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Cell adhesion and proliferation evaluation of SFF-based biodegradable scaffolds fabricated using a multi-head deposition system.
    Kim JY; Yoon JJ; Park EK; Kim DS; Kim SY; Cho DW
    Biofabrication; 2009 Mar; 1(1):015002. PubMed ID: 20811097
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Preparation and characterization of microporous poly(D,L-lactic acid) film for tissue engineering scaffold.
    Shi S; Wang XH; Guo G; Fan M; Huang MJ; Qian ZY
    Int J Nanomedicine; 2010 Nov; 5():1049-55. PubMed ID: 21179227
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Electrospun composite poly(L-lactic acid)/tricalcium phosphate scaffolds induce proliferation and osteogenic differentiation of human adipose-derived stem cells.
    McCullen SD; Zhu Y; Bernacki SH; Narayan RJ; Pourdeyhimi B; Gorga RE; Loboa EG
    Biomed Mater; 2009 Jun; 4(3):035002. PubMed ID: 19390143
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Design and fabrication of porous biodegradable scaffolds: a strategy for tissue engineering.
    Raeisdasteh Hokmabad V; Davaran S; Ramazani A; Salehi R
    J Biomater Sci Polym Ed; 2017 Nov; 28(16):1797-1825. PubMed ID: 28707508
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Synthesis and characterization of PLGA/collagen composite scaffolds as skin substitute produced by electrospinning through two different approaches.
    Sadeghi-Avalshahr AR; Khorsand-Ghayeni M; Nokhasteh S; Molavi AM; Naderi-Meshkin H
    J Mater Sci Mater Med; 2017 Jan; 28(1):14. PubMed ID: 27995492
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Biodegradable poly (lactic acid-co-trimethylene carbonate)/chitosan microsphere scaffold with shape-memory effect for bone tissue engineering.
    Hu X; He J; Yong X; Lu J; Xiao J; Liao Y; Li Q; Xiong C
    Colloids Surf B Biointerfaces; 2020 Nov; 195():111218. PubMed ID: 32650218
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Functionalization of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds via surface heparinization for bone tissue engineering.
    Jiang T; Khan Y; Nair LS; Abdel-Fattah WI; Laurencin CT
    J Biomed Mater Res A; 2010 Jun; 93(3):1193-208. PubMed ID: 19777575
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Fabrication and evaluation of a sustained-release chitosan-based scaffold embedded with PLGA microspheres.
    Song K; Liu Y; Macedo HM; Jiang L; Li C; Mei G; Liu T
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1506-13. PubMed ID: 23827602
    [TBL] [Abstract][Full Text] [Related]  

  • 73. In-vitro degradation characteristics of poly(e-caprolactone)/poly(glycolic acid) scaffolds fabricated via solid-state cryomilling.
    Jonnalagadda JB; Rivero IV; Warzywoda J
    J Biomater Appl; 2015 Oct; 30(4):472-83. PubMed ID: 26152115
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Fabrication of nano-fibrous PLLA scaffold reinforced with chitosan fibers.
    Wang X; Song G; Lou T; Peng W
    J Biomater Sci Polym Ed; 2009; 20(14):1995-2002. PubMed ID: 19874673
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Preparation of poly(D,L-lactic acid) scaffolds using alginate particles.
    Yu G; Fan Y
    J Biomater Sci Polym Ed; 2008; 19(1):87-98. PubMed ID: 18177556
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Effects of hesperidin loaded poly(lactic-co-glycolic acid) scaffolds on growth behavior of costal cartilage cells in vitro and in vivo.
    Cho SA; Cha SR; Park SM; Kim KH; Lee HG; Kim EY; Lee D; Khang G
    J Biomater Sci Polym Ed; 2014; 25(6):625-40. PubMed ID: 24588773
    [TBL] [Abstract][Full Text] [Related]  

  • 77. [A study on nano-hydroxyapatite-chitosan scaffold for bone tissue engineering].
    Wang X; Liu L; Zhang Q
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Feb; 21(2):120-4. PubMed ID: 17357456
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Composite PLA scaffolds reinforced with PDO fibers for tissue engineering.
    Cont L; Grant D; Scotchford C; Todea M; Popa C
    J Biomater Appl; 2013 Feb; 27(6):707-16. PubMed ID: 22071352
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Novel poly(L-lactic acid)/hyaluronic acid macroporous hybrid scaffolds: characterization and assessment of cytotoxicity.
    Antunes JC; Oliveira JM; Reis RL; Soria JM; Gómez-Ribelles JL; Mano JF
    J Biomed Mater Res A; 2010 Sep; 94(3):856-69. PubMed ID: 20336752
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Fabrication and characterization of PLLA-chitosan hybrid scaffolds with improved cell compatibility.
    Jiao Y; Liu Z; Zhou C
    J Biomed Mater Res A; 2007 Mar; 80(4):820-5. PubMed ID: 17058212
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.