BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

404 related articles for article (PubMed ID: 29714955)

  • 1. [Study of Algorithms Reconstructing Gene Regulatory Network with Resampling and Conditional Mutual Information].
    Liu F
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Oct; 33(5):985-90. PubMed ID: 29714955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An ensemble method for reconstructing gene regulatory network with jackknife resampling and arithmetic mean fusion.
    Zhou C; Zhang SW; Liu F
    Int J Data Min Bioinform; 2015; 12(3):328-42. PubMed ID: 26510290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inferring gene regulatory networks from gene expression data by path consistency algorithm based on conditional mutual information.
    Zhang X; Zhao XM; He K; Lu L; Cao Y; Liu J; Hao JK; Liu ZP; Chen L
    Bioinformatics; 2012 Jan; 28(1):98-104. PubMed ID: 22088843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inference of Gene Regulatory Network Based on Local Bayesian Networks.
    Liu F; Zhang SW; Guo WF; Wei ZG; Chen L
    PLoS Comput Biol; 2016 Aug; 12(8):e1005024. PubMed ID: 27479082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A sparse and decomposed particle swarm optimization for inferring gene regulatory networks based on fuzzy cognitive maps.
    Liu L; Liu J
    J Bioinform Comput Biol; 2019 Aug; 17(4):1950023. PubMed ID: 31617458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CN: a consensus algorithm for inferring gene regulatory networks using the SORDER algorithm and conditional mutual information test.
    Aghdam R; Ganjali M; Zhang X; Eslahchi C
    Mol Biosyst; 2015 Mar; 11(3):942-9. PubMed ID: 25607659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene regulatory networks on transfer entropy (GRNTE): a novel approach to reconstruct gene regulatory interactions applied to a case study for the plant pathogen Phytophthora infestans.
    Castro JC; Valdés I; Gonzalez-García LN; Danies G; Cañas S; Winck FV; Ñústez CE; Restrepo S; Riaño-Pachón DM
    Theor Biol Med Model; 2019 Apr; 16(1):7. PubMed ID: 30961611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new asynchronous parallel algorithm for inferring large-scale gene regulatory networks.
    Xiao X; Zhang W; Zou X
    PLoS One; 2015; 10(3):e0119294. PubMed ID: 25807392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inferring gene regulatory networks by singular value decomposition and gravitation field algorithm.
    Zheng M; Wu JN; Huang YX; Liu GX; Zhou Y; Zhou CG
    PLoS One; 2012; 7(12):e51141. PubMed ID: 23226565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CMIP: a software package capable of reconstructing genome-wide regulatory networks using gene expression data.
    Zheng G; Xu Y; Zhang X; Liu ZP; Wang Z; Chen L; Zhu XG
    BMC Bioinformatics; 2016 Dec; 17(Suppl 17):535. PubMed ID: 28155637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstructing Genetic Regulatory Networks Using Two-Step Algorithms with the Differential Equation Models of Neural Networks.
    Chen CK
    Interdiscip Sci; 2018 Dec; 10(4):823-835. PubMed ID: 28748400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inferring Large-Scale Gene Regulatory Networks Using a Randomized Algorithm Based on Singular Value Decomposition.
    Fan A; Wang H; Xiang H; Zou X
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(6):1997-2008. PubMed ID: 29993839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NARROMI: a noise and redundancy reduction technique improves accuracy of gene regulatory network inference.
    Zhang X; Liu K; Liu ZP; Duval B; Richer JM; Zhao XM; Hao JK; Chen L
    Bioinformatics; 2013 Jan; 29(1):106-13. PubMed ID: 23080116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A time series driven decomposed evolutionary optimization approach for reconstructing large-scale gene regulatory networks based on fuzzy cognitive maps.
    Liu J; Chi Y; Zhu C; Jin Y
    BMC Bioinformatics; 2017 May; 18(1):241. PubMed ID: 28482795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A group LASSO-based method for robustly inferring gene regulatory networks from multiple time-course datasets.
    Liu LZ; Wu FX; Zhang WJ
    BMC Syst Biol; 2014; 8 Suppl 3(Suppl 3):S1. PubMed ID: 25350697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Sparse Reconstruction Approach for Identifying Gene Regulatory Networks Using Steady-State Experiment Data.
    Zhang W; Zhou T
    PLoS One; 2015; 10(7):e0130979. PubMed ID: 26207991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An improved Bayesian network method for reconstructing gene regulatory network based on candidate auto selection.
    Xing L; Guo M; Liu X; Wang C; Wang L; Zhang Y
    BMC Genomics; 2017 Nov; 18(Suppl 9):844. PubMed ID: 29219084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A gene regulatory network inference model based on pseudo-siamese network.
    Wang Q; Guo M; Chen J; Duan R
    BMC Bioinformatics; 2023 Apr; 24(1):163. PubMed ID: 37085776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inference of gene regulatory networks based on nonlinear ordinary differential equations.
    Ma B; Fang M; Jiao X
    Bioinformatics; 2020 Dec; 36(19):4885-4893. PubMed ID: 31950997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.