These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 29715003)

  • 1. Self-Healing in Carbon Nitride Evidenced As Material Inflation and Superlubric Behavior.
    Bakoglidis KD; Palisaitis J; Dos Santos RB; Rivelino R; Persson POÅ; Gueorguiev GK; Hultman L
    ACS Appl Mater Interfaces; 2018 May; 10(19):16238-16243. PubMed ID: 29715003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Why is Superlubricity of Diamond-Like Carbon Rare at Nanoscale?
    Jang S; Colliton AG; Flaih HS; Irgens EMK; Kramarczuk LJ; Rauber GD; Vickers J; Ogrinc AL; Zhang Z; Gong Z; Chen Z; Borovsky BP; Kim SH
    Small; 2024 Mar; ():e2400513. PubMed ID: 38545999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macroscale Superlubricity of Multilayer Polyethylenimine/Graphene Oxide Coatings in Different Gas Environments.
    Saravanan P; Selyanchyn R; Tanaka H; Darekar D; Staykov A; Fujikawa S; Lyth SM; Sugimura J
    ACS Appl Mater Interfaces; 2016 Oct; 8(40):27179-27187. PubMed ID: 27636510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Approaches for Achieving Superlubricity in Two-Dimensional Materials.
    Berman D; Erdemir A; Sumant AV
    ACS Nano; 2018 Mar; 12(3):2122-2137. PubMed ID: 29522673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tribological Properties of WS
    Romanov RI; Fominski DV; Demin MV; Gritskevich MD; Doroshina NV; Volkov VS; Fominski VY
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unraveling the Friction Evolution Mechanism of Diamond-Like Carbon Film during Nanoscale Running-In Process toward Superlubricity.
    Wang K; Zhang J; Ma T; Liu Y; Song A; Chen X; Hu Y; Carpick RW; Luo J
    Small; 2021 Jan; 17(1):e2005607. PubMed ID: 33284504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tight-Binding Quantum Chemical Molecular Dynamics Study on the Friction and Wear Processes of Diamond-Like Carbon Coatings: Effect of Tensile Stress.
    Wang Y; Xu J; Ootani Y; Bai S; Higuchi Y; Ozawa N; Adachi K; Martin JM; Kubo M
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):34396-34404. PubMed ID: 28914057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superlubricity of Materials: Progress, Potential, and Challenges.
    Ramezani M; Ripin ZM; Jiang CP; Pasang T
    Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Friction Force Microscopy Analysis of Self-Adaptive W-S-C Coatings: Nanoscale Friction and Wear.
    Zekonyte J; Polcar T
    ACS Appl Mater Interfaces; 2015 Sep; 7(38):21056-64. PubMed ID: 26340161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomic Scale Interface Manipulation, Structural Engineering, and Their Impact on Ultrathin Carbon Films in Controlling Wear, Friction, and Corrosion.
    Dwivedi N; Yeo RJ; Yak LJ; Satyanarayana N; Dhand C; Bhat TN; Zhang Z; Tripathy S; Bhatia CS
    ACS Appl Mater Interfaces; 2016 Jul; 8(27):17606-21. PubMed ID: 27267790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Origin of superlubricity in a-C:H:Si films: a relation to film bonding structure and environmental molecular characteristic.
    Chen X; Kato T; Nosaka M
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):13389-405. PubMed ID: 25100259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genesis of Superlow Friction in Strengthening Si-DLC/PLC Nanostructured Multilayer Films for Robust Superlubricity at Ultrahigh Contact Stress.
    Deng W; Wang Y; Yu Q; Chen X; Huang P; Yu X; Qi W; Li X; Zhang C; Luo J
    ACS Appl Mater Interfaces; 2022 Nov; 14(45):51564-51578. PubMed ID: 36322023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superior wear resistance and low friction in hybrid ultrathin silicon nitride/carbon films: synergy of the interfacial chemistry and carbon microstructure.
    Yeo RJ; Dwivedi N; Zhang L; Zhang Z; Lim CYH; Tripathy S; Bhatia CS
    Nanoscale; 2017 Oct; 9(39):14937-14951. PubMed ID: 28952649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D-Printed Topological MoS
    Zhao Y; Mei H; Chang P; Yang Y; Huang W; Liu Y; Cheng L; Zhang L
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):34984-34995. PubMed ID: 34278775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 100 km wear-free sliding achieved by microscale superlubric graphite/DLC heterojunctions under ambient conditions.
    Peng D; Wang J; Jiang H; Zhao S; Wu Z; Tian K; Ma M; Zheng Q
    Natl Sci Rev; 2022 Jan; 9(1):nwab109. PubMed ID: 35070329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generalized Scaling Law of Structural Superlubricity.
    Wang J; Cao W; Song Y; Qu C; Zheng Q; Ma M
    Nano Lett; 2019 Nov; 19(11):7735-7741. PubMed ID: 31646868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lithium Citrate Triggered Macroscopic Superlubricity with Near-Zero Wear on an Amorphous Carbon Film.
    Sun S; Yi S; Li J; Ding Z; Song W; Luo J
    ACS Appl Mater Interfaces; 2023 Apr; 15(15):19705-19714. PubMed ID: 37018161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of a Microscale Superlubric Graphite Interface.
    Wang K; Qu C; Wang J; Quan B; Zheng Q
    Phys Rev Lett; 2020 Jul; 125(2):026101. PubMed ID: 32701344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Achieving Ultralow Friction and Wear by Tribocatalysis: Enabled by
    Berman D; Erdemir A
    ACS Nano; 2021 Dec; 15(12):18865-18879. PubMed ID: 34914361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superlubricity and Antiwear Properties of In Situ-Formed Ionic Liquids at Ceramic Interfaces Induced by Tribochemical Reactions.
    Ge X; Li J; Zhang C; Liu Y; Luo J
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):6568-6574. PubMed ID: 30657308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.