These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 29715003)

  • 41. Wear performance of self-mating contact pairs of TiN and TiAlN coatings on orthopedic grade Ti-6Al-4V.
    Kim H; Kim CY; Kim DW; Lee IS; Lee GH; Park JC; Lee SJ; Lee KY
    Biomed Mater; 2010 Aug; 5(4):044108. PubMed ID: 20683130
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Surface potential and resistance measurements for detecting wear of chemically-bonded and unbonded molecularly-thick perfluoropolyether lubricant films using atomic force microscopy.
    Palacio M; Bhushan B
    J Colloid Interface Sci; 2007 Nov; 315(1):261-9. PubMed ID: 17631305
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Macroscale Superlubricity with Ultralow Wear and Ultrashort Running-In Period (∼1 s) through Phytic Acid-Based Complex Green Liquid Lubricants.
    Du C; Yu T; Zhang L; Deng H; Shen R; Li X; Feng Y; Wang D
    ACS Appl Mater Interfaces; 2023 Feb; ():. PubMed ID: 36755437
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Superlubricity and Stress-Shielding of Graphene Enables Ultra Scratch-Resistant Glasses.
    Sahoo S; Khan Z; Mannan S; Tiwari U; Ye Z; Krishnan NMA; Gosvami NN
    ACS Appl Mater Interfaces; 2023 Oct; ():. PubMed ID: 37886825
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Macroscale Superlubricity on Engineering Steel in the Presence of Black Phosphorus.
    Tang G; Wu Z; Su F; Wang H; Xu X; Li Q; Ma G; Chu PK
    Nano Lett; 2021 Jun; 21(12):5308-5315. PubMed ID: 34076433
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Friction and Wear Properties of Different Types of Graphene Nanosheets as Effective Solid Lubricants.
    Peng Y; Wang Z; Zou K
    Langmuir; 2015 Jul; 31(28):7782-91. PubMed ID: 25992590
    [TBL] [Abstract][Full Text] [Related]  

  • 47. In vitro evaluation of the tribological response of Mo-doped graphite-like carbon film in different biological media.
    Huang J; Wang L; Liu B; Wan S; Xue Q
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2772-83. PubMed ID: 25580834
    [TBL] [Abstract][Full Text] [Related]  

  • 48. AFM-based nanotribological and electrical characterization of ultrathin wear-resistant ionic liquid films.
    Bhushan B; Palacio M; Kinzig B
    J Colloid Interface Sci; 2008 Jan; 317(1):275-87. PubMed ID: 17936778
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Understanding and Preventing Lubrication Failure at the Carbon Atomic Steps.
    Yan W; Bhuiyan FH; Tang C; Wei L; Jiang Y; Jang S; Liu Y; Wu J; Wang W; Wang Y; Martini A; Qian L; Kim SH; Chen L
    Small; 2023 Sep; 19(37):e2301515. PubMed ID: 37162454
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Superlubricity of Black Phosphorus as Lubricant Additive.
    Wang W; Xie G; Luo J
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):43203-43210. PubMed ID: 30419751
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of Abrasive Particles on Liquid Superlubricity and Mechanisms for Their Removal.
    Wen X; Bai P; Li Y; Cao H; Li S; Wang B; Fang J; Meng Y; Ma L; Tian Y
    Langmuir; 2021 Mar; 37(12):3628-3636. PubMed ID: 33733780
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Tribochemistry and superlubricity induced by hydrogen ions.
    Li J; Zhang C; Sun L; Lu X; Luo J
    Langmuir; 2012 Nov; 28(45):15816-23. PubMed ID: 23078271
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ultralow-Friction and Ultralow-Wear TiN-Ag Solid Solution Coating in Base Oil.
    Liu C; Gu X; Yang L; Song X; Wen M; Wang J; Li Q; Zhang K; Zheng W; Chen C
    J Phys Chem Lett; 2020 Mar; 11(5):1614-1621. PubMed ID: 32048850
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Superlubricity of graphene nanoribbons on gold surfaces.
    Kawai S; Benassi A; Gnecco E; Söde H; Pawlak R; Feng X; Müllen K; Passerone D; Pignedoli CA; Ruffieux P; Fasel R; Meyer E
    Science; 2016 Feb; 351(6276):957-61. PubMed ID: 26917767
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Understanding run-in behavior of diamond-like carbon friction and preventing diamond-like carbon wear in humid air.
    Marino MJ; Hsiao E; Chen Y; Eryilmaz OL; Erdemir A; Kim SH
    Langmuir; 2011 Oct; 27(20):12702-8. PubMed ID: 21888344
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In vitro analysis of the wear, wear debris and biological activity of surface-engineered coatings for use in metal-on-metal total hip replacements.
    Williams S; Tipper JL; Ingham E; Stone MH; Fisher J
    Proc Inst Mech Eng H; 2003; 217(3):155-63. PubMed ID: 12807156
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Superlubricity behavior with phosphoric acid-water network induced by rubbing.
    Li J; Zhang C; Luo J
    Langmuir; 2011 Aug; 27(15):9413-7. PubMed ID: 21682338
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Robust Superlubricity and Moiré Lattice's Size Dependence on Friction between Graphdiyne Layers.
    Ruan X; Shi J; Wang X; Wang WY; Fan X; Zhou F
    ACS Appl Mater Interfaces; 2021 Sep; 13(34):40901-40908. PubMed ID: 34404203
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Adsorption of bovine serum albumin on Zr co-sputtered a-C(:H) films: Implication on wear behaviour.
    Escudeiro A; Polcar T; Cavaleiro A
    J Mech Behav Biomed Mater; 2014 Nov; 39():316-27. PubMed ID: 25171748
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mechanism of Superlubricity Conversion with Polyalkylene Glycol Aqueous Solutions.
    Liu W; Wang H; Liu Y; Li J; Erdemir A; Luo J
    Langmuir; 2019 Sep; 35(36):11784-11790. PubMed ID: 31432683
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.