BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 29715012)

  • 1. Mobile Phone Ratiometric Imaging Enables Highly Sensitive Fluorescence Lateral Flow Immunoassays without External Optical Filters.
    Shah KG; Singh V; Kauffman PC; Abe K; Yager P
    Anal Chem; 2018 Jun; 90(11):6967-6974. PubMed ID: 29715012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Smartphone-based fluorescent lateral flow immunoassay platform for highly sensitive point-of-care detection of Zika virus nonstructural protein 1.
    Rong Z; Wang Q; Sun N; Jia X; Wang K; Xiao R; Wang S
    Anal Chim Acta; 2019 May; 1055():140-147. PubMed ID: 30782365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-Fluorophore Mobile Phone Imaging of Biplexed Real-Time NAATs Overcomes Optical Artifacts in Highly Scattering Porous Media.
    Shah KG; Kumar S; Singh V; Hansen L; Heiniger E; Bishop JD; Lutz B; Yager P
    Anal Chem; 2020 Oct; 92(19):13066-13072. PubMed ID: 32813501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-cost mobile phone microscopy with a reversed mobile phone camera lens.
    Switz NA; D'Ambrosio MV; Fletcher DA
    PLoS One; 2014; 9(5):e95330. PubMed ID: 24854188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A fast and sensitive immunoassay of avian influenza virus based on label-free quantum dot probe and lateral flow test strip.
    Li X; Lu D; Sheng Z; Chen K; Guo X; Jin M; Han H
    Talanta; 2012 Oct; 100():1-6. PubMed ID: 23141303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wavelengths and Lifetimes of Paper Autofluorescence: A Simple Substrate Screening Process to Enhance the Sensitivity of Fluorescence-Based Assays in Paper.
    Shah KG; Yager P
    Anal Chem; 2017 Nov; 89(22):12023-12029. PubMed ID: 29048155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A low-cost smartphone-based platform for highly sensitive point-of-care testing with persistent luminescent phosphors.
    Paterson AS; Raja B; Mandadi V; Townsend B; Lee M; Buell A; Vu B; Brgoch J; Willson RC
    Lab Chip; 2017 Mar; 17(6):1051-1059. PubMed ID: 28154873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Portable Fluorescent Lateral Flow Immunoassay Platform for Rapid Detection of FluA.
    Chen X; Huang X; Kanwal S; Wang J; Wen J; Zhang D
    Biosensors (Basel); 2024 May; 14(6):. PubMed ID: 38920567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thousand-fold fluorescent signal amplification for mHealth diagnostics.
    Balsam J; Rasooly R; Bruck HA; Rasooly A
    Biosens Bioelectron; 2014 Jan; 51():1-7. PubMed ID: 23928092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Opto-fluidics based microscopy and flow cytometry on a cell phone for blood analysis.
    Zhu H; Ozcan A
    Methods Mol Biol; 2015; 1256():171-90. PubMed ID: 25626539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated OLED as excitation light source in fluorescent lateral flow immunoassays.
    Venkatraman V; Steckl AJ
    Biosens Bioelectron; 2015 Dec; 74():150-5. PubMed ID: 26134292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving the Sensitivity and Functionality of Mobile Webcam-Based Fluorescence Detectors for Point-of-Care Diagnostics in Global Health.
    Rasooly R; Bruck HA; Balsam J; Prickril B; Ossandon M; Rasooly A
    Diagnostics (Basel); 2016 May; 6(2):. PubMed ID: 27196933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amplification-free detection of SARS-CoV-2 with CRISPR-Cas13a and mobile phone microscopy.
    Fozouni P; Son S; Díaz de León Derby M; Knott GJ; Gray CN; D'Ambrosio MV; Zhao C; Switz NA; Kumar GR; Stephens SI; Boehm D; Tsou CL; Shu J; Bhuiya A; Armstrong M; Harris AR; Chen PY; Osterloh JM; Meyer-Franke A; Joehnk B; Walcott K; Sil A; Langelier C; Pollard KS; Crawford ED; Puschnik AS; Phelps M; Kistler A; DeRisi JL; Doudna JA; Fletcher DA; Ott M
    Cell; 2021 Jan; 184(2):323-333.e9. PubMed ID: 33306959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimized Lateral Flow Immunoassay Reader for the Detection of Infectious Diseases in Developing Countries.
    Pilavaki E; Demosthenous A
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29156618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cost-effective and compact wide-field fluorescent imaging on a cell-phone.
    Zhu H; Yaglidere O; Su TW; Tseng D; Ozcan A
    Lab Chip; 2011 Jan; 11(2):315-22. PubMed ID: 21063582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orthographic projection capillary array fluorescent sensor for mHealth.
    Balsam J; Bruck HA; Rasooly A
    Methods; 2013 Oct; 63(3):276-81. PubMed ID: 24018203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flash Characterization of Smartphones Used in Point-of-Care Diagnostics.
    Vu BV; Lei R; Mohan C; Kourentzi K; Willson RC
    Biosensors (Basel); 2022 Nov; 12(12):. PubMed ID: 36551027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Capillary Array Waveguide Amplified Fluorescence Detector for mHealth.
    Balsam J; Bruck HA; Rasooly A
    Sens Actuators B Chem; 2013 Sep; 186():711-717. PubMed ID: 24039345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iridium oxide (IV) nanoparticle-based lateral flow immunoassay.
    Quesada-González D; Sena-Torralba A; Wicaksono WP; de la Escosura-Muñiz A; Ivandini TA; Merkoçi A
    Biosens Bioelectron; 2019 May; 132():132-135. PubMed ID: 30870639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Halo-A Universal Fluorescence Reader Based Threat Agent Detection Platform-A Proof of Concept Study Using SARS-CoV-2 Assays.
    Walish J; Cox J; Boone J; Stone J; Henderson N; Maloney M; Ma J; Maa J; On N; Petre K; Goodwin BG; Sozhamannan S; Deans R
    Front Public Health; 2022; 10():852083. PubMed ID: 35493369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.