These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 29715032)

  • 1. Nanoplasmonic Sensing and Capillary Electrophoresis for Fast Screening of Interactions between Phosphatidylcholine Biomembranes and Surfactants.
    Duša F; Chen W; Witos J; Wiedmer SK
    Langmuir; 2018 May; 34(20):5889-5900. PubMed ID: 29715032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions of novel, nonhemolytic surfactants with phospholipid vesicles.
    Thorén PE; Söderman O; Engström S; von Corswant C
    Langmuir; 2007 Jun; 23(13):6956-65. PubMed ID: 17516668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surfactant-based methods for prevention of protein adsorption in capillary electrophoresis.
    Lucy CA; Baryla NE; Yeung KK
    Methods Mol Biol; 2004; 276():1-14. PubMed ID: 15163850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative studies on the adsorption of proteins to the bare silica wall in capillary electrophoresis. III: Effects of adsorbed surfactants on quenching the interaction.
    Castelletti L; Verzola B; Gelfi C; Stoyanov A; Righetti PG
    J Chromatogr A; 2000 Oct; 894(1-2):281-9. PubMed ID: 11100871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein-surfactant interactions: a tale of many states.
    Otzen D
    Biochim Biophys Acta; 2011 May; 1814(5):562-91. PubMed ID: 21397738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mixed micelle formation with phosphatidylcholines: the influence of surfactants with different molecule structures.
    Rupp C; Steckel H; Müller BW
    Int J Pharm; 2010 Mar; 387(1-2):120-8. PubMed ID: 20005930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing insertion and solubilization effects of lysolipids on supported lipid bilayers using microcantilevers.
    Liu KW; Biswal SL
    Anal Chem; 2011 Jun; 83(12):4794-801. PubMed ID: 21604691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immobilization of natural lipid biomembranes and their interactions with choline carboxylates. A nanoplasmonic sensing study.
    Duša F; Chen W; Witos J; Rantamäki AH; King AWT; Sklavounos E; Roth M; Wiedmer SK
    Biochim Biophys Acta Biomembr; 2020 Feb; 1862(2):183115. PubMed ID: 31704086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the Interaction of Dielectric Nanoparticles with Supported Lipid Membrane Coatings on Nanoplasmonic Arrays.
    Ferhan AR; Ma GJ; Jackman JA; Sut TN; Park JH; Cho NJ
    Sensors (Basel); 2017 Jun; 17(7):. PubMed ID: 28644423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The heat of transfer of lipid and surfactant from vesicles into micelles in mixtures of phospholipid and surfactant.
    Opatowski E; Lichtenberg D; Kozlov MM
    Biophys J; 1997 Sep; 73(3):1458-67. PubMed ID: 9284313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enthalpy of interaction and binding isotherms of non-ionic surfactants onto micellar amphiphilic polymers (amphipols).
    Diab C; Winnik FM; Tribet C
    Langmuir; 2007 Mar; 23(6):3025-35. PubMed ID: 17284056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vesicle to micelle transitions of egg phosphatidylcholine liposomes induced by nonionic surfactants, poly(oxyethylene) cetyl ethers.
    Kim JG; Kim JD
    J Biochem; 1991 Sep; 110(3):436-42. PubMed ID: 1769972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of critical micelle concentration of surfactants by capillary electrophoresis.
    Lin CE
    J Chromatogr A; 2004 May; 1037(1-2):467-78. PubMed ID: 15214683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mixed micelles and other structures in the solubilization of bilayer lipid membranes by surfactants.
    Almgren M
    Biochim Biophys Acta; 2000 Nov; 1508(1-2):146-63. PubMed ID: 11090823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid determination of surfactant critical micelle concentrations using pressure-driven flow with capillary electrophoresis instrumentation.
    Stanley FE; Warner AM; Schneiderman E; Stalcup AM
    J Chromatogr A; 2009 Nov; 1216(47):8431-4. PubMed ID: 19836753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling the melting of kinetically frozen poly(butyl acrylate-b-acrylic acid) micelles via addition of surfactant.
    Jacquin M; Muller P; Cottet H; Crooks R; Théodoly O
    Langmuir; 2007 Sep; 23(20):9939-48. PubMed ID: 17718579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of coating electrolytes on two-tailed surfactant bilayer coatings in capillary electrophoresis.
    Gulcev MD; Lucy CA
    Anal Chim Acta; 2011 Mar; 690(1):116-21. PubMed ID: 21414444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stabilization of phosphatidylcholine coatings in capillary electrophoresis by increase in membrane rigidity.
    Lindén MV; Wiedmer SK; Hakala RM; Riekkola ML
    J Chromatogr A; 2004 Oct; 1051(1-2):61-8. PubMed ID: 15532556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA capillary electrophoresis in entangled dynamic polymers of surfactant molecules.
    Wei W; Yeung ES
    Anal Chem; 2001 Apr; 73(8):1776-83. PubMed ID: 11338591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions of surfactants with lipid membranes.
    Heerklotz H
    Q Rev Biophys; 2008; 41(3-4):205-64. PubMed ID: 19079805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.