These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 29715041)

  • 1. Generic and Scalable Method for the Preparation of Monodispersed Metal Sulfide Nanocrystals with Tunable Optical Properties.
    Bera A; Mandal D; Goswami PN; Rath AK; Prasad BLV
    Langmuir; 2018 May; 34(20):5788-5797. PubMed ID: 29715041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A generic method for rational scalable synthesis of monodisperse metal sulfide nanocrystals.
    Zhang H; Hyun BR; Wise FW; Robinson RD
    Nano Lett; 2012 Nov; 12(11):5856-60. PubMed ID: 23034050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides.
    Kwon SG; Hyeon T
    Acc Chem Res; 2008 Dec; 41(12):1696-709. PubMed ID: 18681462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generalized and facile synthesis of semiconducting metal sulfide nanocrystals.
    Joo J; Na HB; Yu T; Yu JH; Kim YW; Wu F; Zhang JZ; Hyeon T
    J Am Chem Soc; 2003 Sep; 125(36):11100-5. PubMed ID: 12952492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scalable synthesis of organic-soluble carbon quantum dots: superior optical properties in solvents, solids, and LEDs.
    Wu M; Zhan J; Geng B; He P; Wu K; Wang L; Xu G; Li Z; Yin L; Pan D
    Nanoscale; 2017 Sep; 9(35):13195-13202. PubMed ID: 28853478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A facile "dispersion-decomposition" route to metal sulfide nanocrystals.
    Zhuang Z; Lu X; Peng Q; Li Y
    Chemistry; 2011 Sep; 17(37):10445-52. PubMed ID: 21915921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The passivating effect of cadmium in PbS/CdS colloidal quantum dots probed by nm-scale depth profiling.
    Clark PCJ; Radtke H; Pengpad A; Williamson AI; Spencer BF; Hardman SJO; Leontiadou MA; Neo DCJ; Fairclough SM; Watt AAR; Pis I; Nappini S; Bondino F; Magnano E; Handrup K; Schulte K; Silly MG; Sirotti F; Flavell WR
    Nanoscale; 2017 May; 9(18):6056-6067. PubMed ID: 28443889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-scale synthesis of high-quality metal sulfide semiconductor quantum dots with tunable surface-plasmon resonance frequencies.
    Kanehara M; Arakawa H; Honda T; Saruyama M; Teranishi T
    Chemistry; 2012 Jul; 18(30):9230-8. PubMed ID: 22733435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diorganyl dichalcogenides as useful synthons for colloidal semiconductor nanocrystals.
    Brutchey RL
    Acc Chem Res; 2015 Nov; 48(11):2918-26. PubMed ID: 26545235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solvent Engineering for High-Performance PbS Quantum Dots Solar Cells.
    Wu R; Yang Y; Li M; Qin D; Zhang Y; Hou L
    Nanomaterials (Basel); 2017 Jul; 7(8):. PubMed ID: 28788077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A General One-Pot Approach to Synthesize Binary and Ternary Metal Sulfide Nanocrystals.
    Xiong C; Liu M; Zhu X; Tang A
    Nanoscale Res Lett; 2019 Jan; 14(1):19. PubMed ID: 30635803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of high-quality I-III-VI semiconductor nanocrystals by tuning relative reactivity of cationic precursors.
    Xie R; Rutherford M; Peng X
    J Am Chem Soc; 2009 Apr; 131(15):5691-7. PubMed ID: 19331353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PbS/Cd₃P₂ quantum heterojunction colloidal quantum dot solar cells.
    Cao H; Liu Z; Zhu X; Peng J; Hu L; Xu S; Luo M; Ma W; Tang J; Liu H
    Nanotechnology; 2015 Jan; 26(3):035401. PubMed ID: 25548866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel Hybrid Ligands for Passivating PbS Colloidal Quantum Dots to Enhance the Performance of Solar Cells.
    Yang Y; Zhao B; Gao Y; Liu H; Tian Y; Qin D; Wu H; Huang W; Hou L
    Nanomicro Lett; 2015; 7(4):325-331. PubMed ID: 30464978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NANOMATERIALS. A tunable library of substituted thiourea precursors to metal sulfide nanocrystals.
    Hendricks MP; Campos MP; Cleveland GT; Jen-La Plante I; Owen JS
    Science; 2015 Jun; 348(6240):1226-30. PubMed ID: 26068846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silicon-based PbS-CQDs infrared photodetector with high sensitivity and fast response.
    Shi Y; Wu Z; Xiang Z; Chen P; Li C; Zhou H; Dong X; Gou J; Wang J; Jiang Y
    Nanotechnology; 2020 Nov; 31(48):485206. PubMed ID: 32931466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and shape-tailoring of copper sulfide/indium sulfide-based nanocrystals.
    Han W; Yi L; Zhao N; Tang A; Gao M; Tang Z
    J Am Chem Soc; 2008 Oct; 130(39):13152-61. PubMed ID: 18774814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated synthesis of photovoltaic-quality colloidal quantum dots using separate nucleation and growth stages.
    Pan J; El-Ballouli AO; Rollny L; Voznyy O; Burlakov VM; Goriely A; Sargent EH; Bakr OM
    ACS Nano; 2013 Nov; 7(11):10158-66. PubMed ID: 24131473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Charge Carrier Conduction Mechanism in PbS Quantum Dot Solar Cells: Electrochemical Impedance Spectroscopy Study.
    Wang H; Wang Y; He B; Li W; Sulaman M; Xu J; Yang S; Tang Y; Zou B
    ACS Appl Mater Interfaces; 2016 Jul; 8(28):18526-33. PubMed ID: 27176547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A general and rapid room-temperature synthesis approach for metal sulphide nanocrystals with tunable properties.
    Liu Y; Liu M; Yin D; Zhu D; Swihart MT
    Nanoscale; 2018 Dec; 11(1):136-144. PubMed ID: 30525174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.