BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

406 related articles for article (PubMed ID: 29715279)

  • 1. Free-living and laboratory gait characteristics in patients with multiple sclerosis.
    Storm FA; Nair KPS; Clarke AJ; Van der Meulen JM; Mazzà C
    PLoS One; 2018; 13(5):e0196463. PubMed ID: 29715279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gait event detection in laboratory and real life settings: Accuracy of ankle and waist sensor based methods.
    Storm FA; Buckley CJ; Mazzà C
    Gait Posture; 2016 Oct; 50():42-46. PubMed ID: 27567451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monitoring gait in multiple sclerosis with novel wearable motion sensors.
    Moon Y; McGinnis RS; Seagers K; Motl RW; Sheth N; Wright JA; Ghaffari R; Sosnoff JJ
    PLoS One; 2017; 12(2):e0171346. PubMed ID: 28178288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinical assessment of gait in individuals with multiple sclerosis using wearable inertial sensors: Comparison with patient-based measure.
    Pau M; Caggiari S; Mura A; Corona F; Leban B; Coghe G; Lorefice L; Marrosu MG; Cocco E
    Mult Scler Relat Disord; 2016 Nov; 10():187-191. PubMed ID: 27919488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of Gait Parameters in Huntington's Disease Using Wearable Sensors in the Clinic and Free-living Conditions.
    Lozano-Garcia M; Doheny EP; Mann E; Morgan-Jones P; Drew C; Busse-Morris M; Lowery MM
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():2239-2249. PubMed ID: 38819972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Short Bouts of Gait Data and Body-Worn Inertial Sensors Can Provide Reliable Measures of Spatiotemporal Gait Parameters from Bilateral Gait Data for Persons with Multiple Sclerosis.
    Motti Ader LG; Greene BR; McManus K; Tubridy N; Caulfield B
    Biosensors (Basel); 2020 Sep; 10(9):. PubMed ID: 32962269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability of sensor-based gait parameters reassessed after a period of one year in people with multiple sclerosis.
    Müller R; Hamacher D; Keune PM; Oschmann P
    BMC Neurol; 2023 Mar; 23(1):120. PubMed ID: 36964510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detecting free-living steps and walking bouts: validating an algorithm for macro gait analysis.
    Hickey A; Del Din S; Rochester L; Godfrey A
    Physiol Meas; 2017 Jan; 38(1):N1-N15. PubMed ID: 27941238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the performance of 17 algorithms from a systematic review: Influence of sensor position, analysed variable and computational approach in gait timing estimation from IMU measurements.
    Pacini Panebianco G; Bisi MC; Stagni R; Fantozzi S
    Gait Posture; 2018 Oct; 66():76-82. PubMed ID: 30170137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing real-world gait with digital technology? Validation, insights and recommendations from the Mobilise-D consortium.
    Micó-Amigo ME; Bonci T; Paraschiv-Ionescu A; Ullrich M; Kirk C; Soltani A; Küderle A; Gazit E; Salis F; Alcock L; Aminian K; Becker C; Bertuletti S; Brown P; Buckley E; Cantu A; Carsin AE; Caruso M; Caulfield B; Cereatti A; Chiari L; D'Ascanio I; Eskofier B; Fernstad S; Froehlich M; Garcia-Aymerich J; Hansen C; Hausdorff JM; Hiden H; Hume E; Keogh A; Kluge F; Koch S; Maetzler W; Megaritis D; Mueller A; Niessen M; Palmerini L; Schwickert L; Scott K; Sharrack B; Sillén H; Singleton D; Vereijken B; Vogiatzis I; Yarnall AJ; Rochester L; Mazzà C; Del Din S;
    J Neuroeng Rehabil; 2023 Jun; 20(1):78. PubMed ID: 37316858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inertial sensor-based gait parameters reflect patient-reported fatigue in multiple sclerosis.
    Ibrahim AA; Küderle A; Gaßner H; Klucken J; Eskofier BM; Kluge F
    J Neuroeng Rehabil; 2020 Dec; 17(1):165. PubMed ID: 33339530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Personalized Approach to Improve Walking Detection in Real-Life Settings: Application to Children with Cerebral Palsy.
    Carcreff L; Paraschiv-Ionescu A; Gerber CN; Newman CJ; Armand S; Aminian K
    Sensors (Basel); 2019 Dec; 19(23):. PubMed ID: 31816854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Timing estimation for gait in water from inertial sensor measurements: Analysis of the performance of 17 algorithms.
    Pacini Panebianco G; Bisi MC; Stagni R; Fantozzi S
    Comput Methods Programs Biomed; 2020 Dec; 197():105703. PubMed ID: 32818913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wearable sensors can reliably quantify gait alterations associated with disability in people with progressive multiple sclerosis in a clinical setting.
    Angelini L; Hodgkinson W; Smith C; Dodd JM; Sharrack B; Mazzà C; Paling D
    J Neurol; 2020 Oct; 267(10):2897-2909. PubMed ID: 32468119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantifying six-minute walk induced gait deterioration with inertial sensors in multiple sclerosis subjects.
    Engelhard MM; Dandu SR; Patek SD; Lach JC; Goldman MD
    Gait Posture; 2016 Sep; 49():340-345. PubMed ID: 27479220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-World Gait Detection Using a Wrist-Worn Inertial Sensor: Validation Study.
    Kluge F; Brand YE; Micó-Amigo ME; Bertuletti S; D'Ascanio I; Gazit E; Bonci T; Kirk C; Küderle A; Palmerini L; Paraschiv-Ionescu A; Salis F; Soltani A; Ullrich M; Alcock L; Aminian K; Becker C; Brown P; Buekers J; Carsin AE; Caruso M; Caulfield B; Cereatti A; Chiari L; Echevarria C; Eskofier B; Evers J; Garcia-Aymerich J; Hache T; Hansen C; Hausdorff JM; Hiden H; Hume E; Keogh A; Koch S; Maetzler W; Megaritis D; Niessen M; Perlman O; Schwickert L; Scott K; Sharrack B; Singleton D; Vereijken B; Vogiatzis I; Yarnall A; Rochester L; Mazzà C; Del Din S; Mueller A
    JMIR Form Res; 2024 May; 8():e50035. PubMed ID: 38691395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Objective sensor-based gait measures reflect motor impairment in multiple sclerosis patients: Reliability and clinical validation of a wearable sensor device.
    Flachenecker F; Gaßner H; Hannik J; Lee DH; Flachenecker P; Winkler J; Eskofier B; Linker RA; Klucken J
    Mult Scler Relat Disord; 2020 Apr; 39():101903. PubMed ID: 31927199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial and temporal characteristics of gait as outcome measures in multiple sclerosis (EDSS 0 to 6.5).
    Lizrova Preiningerova J; Novotna K; Rusz J; Sucha L; Ruzicka E; Havrdova E
    J Neuroeng Rehabil; 2015 Feb; 12():14. PubMed ID: 25890382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The ability of the instrumented tandem walking tests to discriminate fully ambulatory people with MS from healthy adults.
    Grinberg Y; Berkowitz S; Hershkovitz L; Malcay O; Kalron A
    Gait Posture; 2019 May; 70():90-94. PubMed ID: 30831545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wearable inertial sensors are highly sensitive in the detection of gait disturbances and fatigue at early stages of multiple sclerosis.
    Müller R; Hamacher D; Hansen S; Oschmann P; Keune PM
    BMC Neurol; 2021 Sep; 21(1):337. PubMed ID: 34481481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.