BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 29715424)

  • 1. Intrinsic Conformational Preferences and Interactions in α-Synuclein Fibrils: Insights from Molecular Dynamics Simulations.
    Ilie IM; Nayar D; den Otter WK; van der Vegt NFA; Briels WJ
    J Chem Theory Comput; 2018 Jun; 14(6):3298-3310. PubMed ID: 29715424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation on the Molecular Interactions Stabilizing the Structure of α-synuclein Fibril: An In silico Study.
    Sanjeev A; Mattaparthi VSK
    Cent Nerv Syst Agents Med Chem; 2017; 17(3):209-218. PubMed ID: 28460628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The attachment of α-synuclein to a fiber: A coarse-grain approach.
    Ilie IM; den Otter WK; Briels WJ
    J Chem Phys; 2017 Mar; 146(11):115102. PubMed ID: 28330339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biasing the native α-synuclein conformational ensemble towards compact states abolishes aggregation and neurotoxicity.
    Carija A; Pinheiro F; Pujols J; Brás IC; Lázaro DF; Santambrogio C; Grandori R; Outeiro TF; Navarro S; Ventura S
    Redox Biol; 2019 Apr; 22():101135. PubMed ID: 30769283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The fold preference and thermodynamic stability of α-synuclein fibrils is encoded in the non-amyloid-β component region.
    Xu L; Bhattacharya S; Thompson D
    Phys Chem Chem Phys; 2018 Feb; 20(6):4502-4512. PubMed ID: 29372732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic Properties of Human α-Synuclein Related to Propensity to Amyloid Fibril Formation.
    Fujiwara S; Kono F; Matsuo T; Sugimoto Y; Matsumoto T; Narita A; Shibata K
    J Mol Biol; 2019 Aug; 431(17):3229-3245. PubMed ID: 31181290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The hot sites of α-synuclein in amyloid fibril formation.
    Khammari A; Arab SS; Ejtehadi MR
    Sci Rep; 2020 Jul; 10(1):12175. PubMed ID: 32699326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. α-Synuclein dimer structures found from computational simulations.
    Sahu KK; Woodside MT; Tuszynski JA
    Biochimie; 2015 Sep; 116():133-40. PubMed ID: 26193124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alternative Structures of α-Synuclein.
    Dułak D; Gadzała M; Banach M; Konieczny L; Roterman I
    Molecules; 2020 Jan; 25(3):. PubMed ID: 32019169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of the acidic domain of α-synuclein in amyloid fibril formation: a molecular dynamics study.
    Park S; Yoon J; Jang S; Lee K; Shin S
    J Biomol Struct Dyn; 2016; 34(2):376-83. PubMed ID: 25869255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Post-translational modification sites are present in hydrophilic cavities of alpha-synuclein, tau, FUS, and TDP-43 fibrils: A molecular dynamics study.
    Kochen NN; Seaney D; Vasandani V; Murray M; Braun AR; Sachs JN
    Proteins; 2024 Jul; 92(7):854-864. PubMed ID: 38458997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structures and free energy landscapes of the A53T mutant-type α-synuclein protein and impact of A53T mutation on the structures of the wild-type α-synuclein protein with dynamics.
    Coskuner O; Wise-Scira O
    ACS Chem Neurosci; 2013 Jul; 4(7):1101-13. PubMed ID: 23607785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation studies on the stabilities of aggregates formed by fibril-forming segments of alpha-Synuclein.
    Yoon J; Jang S; Lee K; Shin S
    J Biomol Struct Dyn; 2009 Dec; 27(3):259-70. PubMed ID: 19795910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concerted enhanced-sampling simulations to elucidate the helix-fibril transition pathway of intrinsically disordered α-Synuclein.
    Saurabh A; Prabhu NP
    Int J Biol Macromol; 2022 Dec; 223(Pt A):1024-1041. PubMed ID: 36379279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular simulations of the fluctuating conformational dynamics of intrinsically disordered proteins.
    Smith WW; Schreck CF; Hashem N; Soltani S; Nath A; Rhoades E; O'Hern CS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041910. PubMed ID: 23214618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. N-terminal acetylation of α-synuclein induces increased transient helical propensity and decreased aggregation rates in the intrinsically disordered monomer.
    Kang L; Moriarty GM; Woods LA; Ashcroft AE; Radford SE; Baum J
    Protein Sci; 2012 Jul; 21(7):911-7. PubMed ID: 22573613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-Amyloid-β Component of Human α-Synuclein Oligomers Induces Formation of New Aβ Oligomers: Insight into the Mechanisms That Link Parkinson's and Alzheimer's Diseases.
    Atsmon-Raz Y; Miller Y
    ACS Chem Neurosci; 2016 Jan; 7(1):46-55. PubMed ID: 26479553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of Tyr to Ala mutations on alpha-synuclein fibrillation and structural properties.
    Ulrih NP; Barry CH; Fink AL
    Biochim Biophys Acta; 2008 Oct; 1782(10):581-5. PubMed ID: 18692132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural analyses and force fields comparison for NACore (68-78) and SubNACore (69-77) fibril segments of Parkinson's disease.
    Alıcı H
    J Mol Model; 2020 May; 26(6):132. PubMed ID: 32394304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of different regions of alpha-synuclein in the assembly of fibrils.
    Qin Z; Hu D; Han S; Hong DP; Fink AL
    Biochemistry; 2007 Nov; 46(46):13322-30. PubMed ID: 17963364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.