BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 29715450)

  • 21. Oxidative and endoplasmic reticulum stress in β-cell dysfunction in diabetes.
    Hasnain SZ; Prins JB; McGuckin MA
    J Mol Endocrinol; 2016 Feb; 56(2):R33-54. PubMed ID: 26576641
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Contribution of Oxidative Stress and Impaired Biogenesis of Pancreatic β-Cells to Type 2 Diabetes.
    Ježek P; Jabůrek M; Plecitá-Hlavatá L
    Antioxid Redox Signal; 2019 Oct; 31(10):722-751. PubMed ID: 30450940
    [No Abstract]   [Full Text] [Related]  

  • 23. Roles of ceramide and sphingolipids in pancreatic β-cell function and dysfunction.
    Boslem E; Meikle PJ; Biden TJ
    Islets; 2012; 4(3):177-87. PubMed ID: 22847494
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of Ceramide in Apoptosis and Development of Insulin Resistance.
    Kuzmenko DI; Klimentyeva TK
    Biochemistry (Mosc); 2016 Sep; 81(9):913-27. PubMed ID: 27682164
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Underappreciated roles for Rho GDP dissociation inhibitors (RhoGDIs) in cell function: Lessons learned from the pancreatic islet β-cell.
    Kowluru A; Gleason NF
    Biochem Pharmacol; 2022 Mar; 197():114886. PubMed ID: 34968495
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inhibition of central de novo ceramide synthesis restores insulin signaling in hypothalamus and enhances β-cell function of obese Zucker rats.
    Campana M; Bellini L; Rouch C; Rachdi L; Coant N; Butin N; Bandet CL; Philippe E; Meneyrol K; Kassis N; Dairou J; Hajduch E; Colsch B; Magnan C; Le Stunff H
    Mol Metab; 2018 Feb; 8():23-36. PubMed ID: 29233519
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ceramide synthase 4 and de novo production of ceramides with specific N-acyl chain lengths are involved in glucolipotoxicity-induced apoptosis of INS-1 β-cells.
    Véret J; Coant N; Berdyshev EV; Skobeleva A; Therville N; Bailbé D; Gorshkova I; Natarajan V; Portha B; Le Stunff H
    Biochem J; 2011 Aug; 438(1):177-89. PubMed ID: 21592087
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Glycemic control in diabetes is restored by therapeutic manipulation of cytokines that regulate beta cell stress.
    Hasnain SZ; Borg DJ; Harcourt BE; Tong H; Sheng YH; Ng CP; Das I; Wang R; Chen AC; Loudovaris T; Kay TW; Thomas HE; Whitehead JP; Forbes JM; Prins JB; McGuckin MA
    Nat Med; 2014 Dec; 20(12):1417-26. PubMed ID: 25362253
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Islet β-cell failure in type 2 diabetes--Within the network of toxic lipids.
    Janikiewicz J; Hanzelka K; Kozinski K; Kolczynska K; Dobrzyn A
    Biochem Biophys Res Commun; 2015 May; 460(3):491-6. PubMed ID: 25843796
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ceramide formation as a target in beta-cell survival and function.
    Lang F; Ullrich S; Gulbins E
    Expert Opin Ther Targets; 2011 Sep; 15(9):1061-71. PubMed ID: 21635197
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Obesity and type 2 diabetes: slow down!--Can metabolic deceleration protect the islet beta cell from excess nutrient-induced damage?
    Andrikopoulos S
    Mol Cell Endocrinol; 2010 Mar; 316(2):140-6. PubMed ID: 19815054
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hyperglycemic Conditions Promote Rac1-Mediated Serine536 Phosphorylation of p65 Subunit of NFκB (RelA) in Pancreatic Beta Cells.
    Kowluru A; Gamage S; Hali M; Gleason N
    Cell Physiol Biochem; 2022 Aug; 56(4):367-381. PubMed ID: 35981264
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biologically active lipids promote trafficking and membrane association of Rac1 in insulin-secreting INS 832/13 cells.
    McDonald P; Veluthakal R; Kaur H; Kowluru A
    Am J Physiol Cell Physiol; 2007 Mar; 292(3):C1216-20. PubMed ID: 17035298
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inside the β Cell: Molecular Stress Response Pathways in Diabetes Pathogenesis.
    Kulkarni A; Muralidharan C; May SC; Tersey SA; Mirmira RG
    Endocrinology; 2022 Nov; 164(1):. PubMed ID: 36317483
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Glucolipotoxicity and beta cells in type 2 diabetes mellitus: target for durable therapy?
    van Raalte DH; Diamant M
    Diabetes Res Clin Pract; 2011 Aug; 93 Suppl 1():S37-46. PubMed ID: 21864750
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bridges between mitochondrial oxidative stress, ER stress and mTOR signaling in pancreatic β cells.
    Wang J; Yang X; Zhang J
    Cell Signal; 2016 Aug; 28(8):1099-104. PubMed ID: 27185188
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protection of pancreatic beta-cells: is it feasible?
    Bonora E
    Nutr Metab Cardiovasc Dis; 2008 Jan; 18(1):74-83. PubMed ID: 18096375
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Par-4/NF-κB Mediates the Apoptosis of Islet β Cells Induced by Glucolipotoxicity.
    QiNan W; XiaGuang G; XiaoTian L; WuQuan D; Ling Z; Bing C
    J Diabetes Res; 2016; 2016():4692478. PubMed ID: 27340675
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CARD9 Mediates Pancreatic Islet Beta-Cell Dysfunction Under the Duress of Hyperglycemic Stress.
    Gamage S; Hali M; Chen F; Kowluru A
    Cell Physiol Biochem; 2022 Apr; 56(2):120-137. PubMed ID: 35362297
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Augmented Rac1 Expression and Activity are Associated with Oxidative Stress and Decline of β Cell Function in Obesity.
    Zhou S; Yu D; Ning S; Zhang H; Jiang L; He L; Li M; Sun M
    Cell Physiol Biochem; 2015; 35(6):2135-48. PubMed ID: 25896148
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.