These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 29715480)

  • 1. A novel assay to evaluate action selection in escape behavior.
    Goodman DP; Eldredge A; von Reyn CR
    J Neurosci Methods; 2018 Jul; 304():154-161. PubMed ID: 29715480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A spike-timing mechanism for action selection.
    von Reyn CR; Breads P; Peek MY; Zheng GZ; Williamson WR; Yee AL; Leonardo A; Card GM
    Nat Neurosci; 2014 Jul; 17(7):962-70. PubMed ID: 24908103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visually mediated motor planning in the escape response of Drosophila.
    Card G; Dickinson MH
    Curr Biol; 2008 Sep; 18(17):1300-7. PubMed ID: 18760606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ontogeny of flight initiation in the fly Drosophila melanogaster: implications for the giant fibre system.
    Hammond S; O'Shea M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 Nov; 193(11):1125-37. PubMed ID: 17851667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. State-dependent decoupling of sensory and motor circuits underlies behavioral flexibility in Drosophila.
    Ache JM; Namiki S; Lee A; Branson K; Card GM
    Nat Neurosci; 2019 Jul; 22(7):1132-1139. PubMed ID: 31182867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feature Integration Drives Probabilistic Behavior in the Drosophila Escape Response.
    von Reyn CR; Nern A; Williamson WR; Breads P; Wu M; Namiki S; Card GM
    Neuron; 2017 Jun; 94(6):1190-1204.e6. PubMed ID: 28641115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel neuronal pathway for visually guided escape in Drosophila melanogaster.
    Fotowat H; Fayyazuddin A; Bellen HJ; Gabbiani F
    J Neurophysiol; 2009 Aug; 102(2):875-85. PubMed ID: 19474177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Attention-like processes underlying optomotor performance in a Drosophila choice maze.
    van Swinderen B; Flores KA
    Dev Neurobiol; 2007 Feb; 67(2):129-45. PubMed ID: 17443778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Abolishment of Spontaneous Flight Turns in Visually Responsive Drosophila.
    Ferris BD; Green J; Maimon G
    Curr Biol; 2018 Jan; 28(2):170-180.e5. PubMed ID: 29337081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative approaches to escape.
    Peek MY; Card GM
    Curr Opin Neurobiol; 2016 Dec; 41():167-173. PubMed ID: 27710794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Escape response of the crab Neohelice to computer generated looming and translational visual danger stimuli.
    Scarano F; Tomsic D
    J Physiol Paris; 2014; 108(2-3):141-7. PubMed ID: 25220660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Making an escape: development and function of the Drosophila giant fibre system.
    Allen MJ; Godenschwege TA; Tanouye MA; Phelan P
    Semin Cell Dev Biol; 2006 Feb; 17(1):31-41. PubMed ID: 16378740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wing and body motion during flight initiation in Drosophila revealed by automated visual tracking.
    Fontaine EI; Zabala F; Dickinson MH; Burdick JW
    J Exp Biol; 2009 May; 212(Pt 9):1307-23. PubMed ID: 19376952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A cGMP-dependent protein kinase gene, foraging, modifies habituation-like response decrement of the giant fiber escape circuit in Drosophila.
    Engel JE; Xie XJ; Sokolowski MB; Wu CF
    Learn Mem; 2000; 7(5):341-52. PubMed ID: 11040266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploitation of an ancient escape circuit by an avian predator: relationships between taxon-specific prey escape circuits and the sensitivity to visual cues from the predator.
    Jabłoński PG; Strausfeld NJ
    Brain Behav Evol; 2001; 58(4):218-40. PubMed ID: 11964498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flies dynamically anti-track, rather than ballistically escape, aversive odor during flight.
    Wasserman S; Lu P; Aptekar JW; Frye MA
    J Exp Biol; 2012 Aug; 215(Pt 16):2833-40. PubMed ID: 22837456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Escape flight initiation in the fly.
    Hammond S; O'Shea M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 Apr; 193(4):471-6. PubMed ID: 17221263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visual motion speed determines a behavioral switch from forward flight to expansion avoidance in Drosophila.
    Reiser MB; Dickinson MH
    J Exp Biol; 2013 Feb; 216(Pt 4):719-32. PubMed ID: 23197097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An open platform for visual stimulation of insects.
    Prech S; Groschner LN; Borst A
    PLoS One; 2024; 19(4):e0301999. PubMed ID: 38635686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tools for Rapid High-Resolution Behavioral Phenotyping of Automatically Isolated Drosophila.
    Williamson WR; Peek MY; Breads P; Coop B; Card GM
    Cell Rep; 2018 Nov; 25(6):1636-1649.e5. PubMed ID: 30404015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.