These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 29715596)

  • 1. Complex network theory for the identification and assessment of candidate protein targets.
    McGarry K; McDonald S
    Comput Biol Med; 2018 Jun; 97():113-123. PubMed ID: 29715596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drug target ontology to classify and integrate drug discovery data.
    Lin Y; Mehta S; Küçük-McGinty H; Turner JP; Vidovic D; Forlin M; Koleti A; Nguyen DT; Jensen LJ; Guha R; Mathias SL; Ursu O; Stathias V; Duan J; Nabizadeh N; Chung C; Mader C; Visser U; Yang JJ; Bologa CG; Oprea TI; Schürer SC
    J Biomed Semantics; 2017 Nov; 8(1):50. PubMed ID: 29122012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. INFERENCE OF PERSONALIZED DRUG TARGETS VIA NETWORK PROPAGATION.
    Shnaps O; Perry E; Silverbush D; Sharan R
    Pac Symp Biocomput; 2016; 21():156-67. PubMed ID: 26776182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the relationship between hub proteins and drug targets based on GO and intrinsic disorder.
    Fu Y; Guo Y; Wang Y; Luo J; Pu X; Li M; Zhang Z
    Comput Biol Chem; 2015 Jun; 56():41-8. PubMed ID: 25854804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrating Biological Networks for Drug Target Prediction and Prioritization.
    Ji X; Freudenberg JM; Agarwal P
    Methods Mol Biol; 2019; 1903():203-218. PubMed ID: 30547444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid imbalanced data classifier models for computational discovery of antibiotic drug targets.
    Kocyigit Y; Seker H
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():812-5. PubMed ID: 25570083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Network-based prediction and knowledge mining of disease genes.
    Carson MB; Lu H
    BMC Med Genomics; 2015; 8 Suppl 2(Suppl 2):S9. PubMed ID: 26043920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-scale identification of potential drug targets based on the topological features of human protein-protein interaction network.
    Li ZC; Zhong WQ; Liu ZQ; Huang MH; Xie Y; Dai Z; Zou XY
    Anal Chim Acta; 2015 Apr; 871():18-27. PubMed ID: 25847157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting new molecular targets for rhein using network pharmacology.
    Zhang A; Sun H; Yang B; Wang X
    BMC Syst Biol; 2012 Mar; 6():20. PubMed ID: 22433437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Computational Platform and Guide for Acceleration of Novel Medicines and Personalized Medicine.
    Melas IN; Sakellaropoulos T; Hur J; Messinis D; Guo EY; Alexopoulos LG; Bai JPF
    Methods Mol Biol; 2019; 1939():181-198. PubMed ID: 30848462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Drug Repurposing and Protein-Protein Interaction Network Study of Ribosomopathies Using Yeast as a Model System.
    Ertekin E; Gencturk E; Kasim M; Ulgen KO
    OMICS; 2020 Feb; 24(2):96-109. PubMed ID: 31895625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A drug target slim: using gene ontology and gene ontology annotations to navigate protein-ligand target space in ChEMBL.
    Mutowo P; Bento AP; Dedman N; Gaulton A; Hersey A; Lomax J; Overington JP
    J Biomed Semantics; 2016 Sep; 7(1):59. PubMed ID: 27678076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Displaying chemical information on a biological network using Cytoscape.
    Wallace IM; Bader GD; Giaever G; Nislow C
    Methods Mol Biol; 2011; 781():363-76. PubMed ID: 21877291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adding biological meaning to human protein-protein interactions identified by yeast two-hybrid screenings: A guide through bioinformatics tools.
    Felgueiras J; Silva JV; Fardilha M
    J Proteomics; 2018 Jan; 171():127-140. PubMed ID: 28526529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ligand-target prediction by structural network biology using nAnnoLyze.
    Martínez-Jiménez F; Marti-Renom MA
    PLoS Comput Biol; 2015 Mar; 11(3):e1004157. PubMed ID: 25816344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary Graph Clustering for Protein Complex Identification.
    He T; Chan KCC
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(3):892-904. PubMed ID: 28029628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From Function to Interaction: A New Paradigm for Accurately Predicting Protein Complexes Based on Protein-to-Protein Interaction Networks.
    Xu B; Guan J
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(4):616-27. PubMed ID: 26356332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of human protein complexes from local sub-graphs of protein-protein interaction network based on random forest with topological structure features.
    Li ZC; Lai YH; Chen LL; Zhou X; Dai Z; Zou XY
    Anal Chim Acta; 2012 Mar; 718():32-41. PubMed ID: 22305895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drug-target interaction prediction by random walk on the heterogeneous network.
    Chen X; Liu MX; Yan GY
    Mol Biosyst; 2012 Jul; 8(7):1970-8. PubMed ID: 22538619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Harnessing public domain data to discover and validate therapeutic targets.
    Reisdorf WC; Chhugani N; Sanseau P; Agarwal P
    Expert Opin Drug Discov; 2017 Jul; 12(7):687-693. PubMed ID: 28494630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.