BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 29715669)

  • 1. Removal of lead and fluoride from contaminated water using exhausted coffee grounds based bio-sorbent.
    Naga Babu A; Reddy DS; Kumar GS; Ravindhranath K; Krishna Mohan GV
    J Environ Manage; 2018 Jul; 218():602-612. PubMed ID: 29715669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of norfloxacin in deionized, municipal water and urine using rice (Oryza sativa) and coffee (Coffea arabica) husk wastes as natural adsorbents.
    Paredes-Laverde M; Silva-Agredo J; Torres-Palma RA
    J Environ Manage; 2018 May; 213():98-108. PubMed ID: 29482094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of lanthanum impregnated cellulose, derived from biomass, as an adsorbent for the removal of fluoride from drinking water.
    Nagaraj A; Sadasivuni KK; Rajan M
    Carbohydr Polym; 2017 Nov; 176():402-410. PubMed ID: 28927624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequential synergetic sorption analysis of Gracilaria Rhodophyta biochar toward aluminum and fluoride: A statistical optimization approach.
    Naga Babu A; Srinivasa Reddy D; Suresh Kumar G; Ravindhranath K; Krishna Mohan GV
    Water Environ Res; 2020 Jun; 92(6):880-898. PubMed ID: 31813162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorbent synthesis of polypyrrole/TiO(2) for effective fluoride removal from aqueous solution for drinking water purification: Adsorbent characterization and adsorption mechanism.
    Chen J; Shu C; Wang N; Feng J; Ma H; Yan W
    J Colloid Interface Sci; 2017 Jun; 495():44-52. PubMed ID: 28189108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and characterization of novel green synthesized iron-aluminum nanocomposite and studying its efficiency in fluoride removal.
    Mondal P; Purkait MK
    Chemosphere; 2019 Nov; 235():391-402. PubMed ID: 31271999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of activated carbon from exhausted coffee grounds chemically modified with natural eucalyptus ash lye and its use in the fluoride adsorption process.
    Bergamini MHL; de Oliveira SB; Scalize PS
    Environ Sci Pollut Res Int; 2023 Aug; 30(39):91276-91291. PubMed ID: 37474854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An excellent fluoride sorption behavior of ceramic adsorbent.
    Chen N; Zhang Z; Feng C; Li M; Zhu D; Chen R; Sugiura N
    J Hazard Mater; 2010 Nov; 183(1-3):460-5. PubMed ID: 20728990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced fluoride sorption by mechanochemically activated kaolinites.
    Meenakshi S; Sundaram CS; Sukumar R
    J Hazard Mater; 2008 May; 153(1-2):164-72. PubMed ID: 17897780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of the adsorption kinetics, equilibrium, and thermodynamic for Pb(II) removal using a low-cost hybrid biowaste adsorbent, eggshell/coffee ground/sericite.
    Choi HJ
    Water Environ Res; 2019 Dec; 91(12):1600-1612. PubMed ID: 31188507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of aqueous-phase Pb(II), Cd(II), As(III), and As(V) by nanoscale zero-valent iron supported on exhausted coffee grounds.
    Park MH; Jeong S; Lee G; Park H; Kim JY
    Waste Manag; 2019 Jun; 92():49-58. PubMed ID: 31160026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-pot synthesis of Cr(III)-incorporated Zr(IV) oxide for fluoride remediation: a lab to field performance evaluation study.
    Kanrar S; Ghosh A; Ghosh A; Mondal A; Sadhukhan M; Ghosh UC; Sasikumar P
    Environ Sci Pollut Res Int; 2020 May; 27(13):15029-15044. PubMed ID: 32065364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defluoridation from aqueous solutions by nano-alumina: characterization and sorption studies.
    Kumar E; Bhatnagar A; Kumar U; Sillanpää M
    J Hazard Mater; 2011 Feb; 186(2-3):1042-9. PubMed ID: 21177029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental and statistical analysis of As(III) adsorption from contaminated water using activated red mud doped calcium-alginate beads.
    Naga Babu A; Raja Sree T; Srinivasa Reddy D; Suresh Kumar G; Krishna Mohan GV
    Environ Technol; 2021 May; 42(12):1810-1825. PubMed ID: 31622180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wide pH range for fluoride removal from water by MHS-MgO/MgCO₃ adsorbent: kinetic, thermodynamic and mechanism studies.
    Zhang K; Wu S; Wang X; He J; Sun B; Jia Y; Luo T; Meng F; Jin Z; Lin D; Shen W; Kong L; Liu J
    J Colloid Interface Sci; 2015 May; 446():194-202. PubMed ID: 25668780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Defluoridation chemistry of synthetic hydroxyapatite at nano scale: equilibrium and kinetic studies.
    Sundaram CS; Viswanathan N; Meenakshi S
    J Hazard Mater; 2008 Jun; 155(1-2):206-15. PubMed ID: 18162304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoarchitectonics and Kinetics Insights into Fluoride Removal from Drinking Water Using Magnetic Tea Biochar.
    Ashraf I; Li R; Chen B; Al-Ansari N; Rizwan Aslam M; Altaf AR; Elbeltagi A
    Int J Environ Res Public Health; 2022 Oct; 19(20):. PubMed ID: 36293670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of chitosan supported zirconium(IV) tungstophosphate composite for fluoride removal.
    Viswanathan N; Meenakshi S
    J Hazard Mater; 2010 Apr; 176(1-3):459-65. PubMed ID: 20006431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of fluoride from aqueous solution by adsorption onto Kanuma mud.
    Chen N; Zhang Z; Feng C; Li M; Chen R; Sugiura N
    Water Sci Technol; 2010; 62(8):1888-97. PubMed ID: 20962405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of lead ions in drinking water by coffee grounds as vegetable biomass.
    Tokimoto T; Kawasaki N; Nakamura T; Akutagawa J; Tanada S
    J Colloid Interface Sci; 2005 Jan; 281(1):56-61. PubMed ID: 15567380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.