These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 29715784)
1. Space-borne profiling of atmospheric thermodynamic variables with Raman lidar: performance simulations. Di Girolamo P; Behrendt A; Wulfmeyer V Opt Express; 2018 Apr; 26(7):8125-8161. PubMed ID: 29715784 [TBL] [Abstract][Full Text] [Related]
2. Spaceborne profiling of atmospheric temperature and particle extinction with pure rotational Raman lidar and of relative humidity in combination with differential absorption lidar: performance simulations. Di Girolamo P; Behrendt A; Wulfmeyer V Appl Opt; 2006 Apr; 45(11):2474-94. PubMed ID: 16623245 [TBL] [Abstract][Full Text] [Related]
3. Atmospheric Thermodynamic Profiling through the Use of a Micro-Pulse Raman Lidar System: Introducing the Compact Raman Lidar MARCO. Di Girolamo P; Franco N; Di Paolantonio M; Summa D; Dionisi D Sensors (Basel); 2023 Oct; 23(19):. PubMed ID: 37837092 [TBL] [Abstract][Full Text] [Related]
4. Retrieval of water vapor mixing ratio from a multiple channel Raman-scatter lidar using an optimal estimation method. Sica RJ; Haefele A Appl Opt; 2016 Feb; 55(4):763-77. PubMed ID: 26836078 [TBL] [Abstract][Full Text] [Related]
5. Active Raman sounding of the earth's water vapor field. Tratt DM; Whiteman DN; Demoz BB; Farley RW; Wessel JE Spectrochim Acta A Mol Biomol Spectrosc; 2005 Aug; 61(10):2335-41. PubMed ID: 16029854 [TBL] [Abstract][Full Text] [Related]
6. Doppler lidar atmospheric wind sensor: reevaluation of a 355-nm incoherent Doppler lidar. Rees D; McDermid IS Appl Opt; 1990 Oct; 29(28):4133-44. PubMed ID: 20577356 [TBL] [Abstract][Full Text] [Related]
7. LIDAR developments at Clermont-Ferrand--France for atmospheric observation. Fréville P; Montoux N; Baray JL; Chauvigné A; Réveret F; Hervo M; Dionisi D; Payen G; Sellegri K Sensors (Basel); 2015 Jan; 15(2):3041-69. PubMed ID: 25643059 [TBL] [Abstract][Full Text] [Related]
8. Six-channel multi-wavelength polarization Raman lidar for aerosol and water vapor profiling. Wang Z; Mao J; Li J; Zhao H; Zhou C; Sheng H Appl Opt; 2017 Jul; 56(20):5620-5629. PubMed ID: 29047703 [TBL] [Abstract][Full Text] [Related]
9. Optimized retrieval method for atmospheric temperature profiling based on rotational Raman lidar. Yan Q; Wang Y; Gao T; Gao F; Di H; Song Y; Hua D Appl Opt; 2019 Jul; 58(19):5170-5178. PubMed ID: 31503611 [TBL] [Abstract][Full Text] [Related]
10. RAMSES: German Meteorological Service autonomous Raman lidar for water vapor, temperature, aerosol, and cloud measurements. Reichardt J; Wandinger U; Klein V; Mattis I; Hilber B; Begbie R Appl Opt; 2012 Dec; 51(34):8111-31. PubMed ID: 23207381 [TBL] [Abstract][Full Text] [Related]
11. Determination by spaceborne backscatter lidar of the structural parameters of atmospheric scattering layers. Chazette P; Pelon J; Mégie G Appl Opt; 2001 Jul; 40(21):3428-40. PubMed ID: 18360368 [TBL] [Abstract][Full Text] [Related]
12. [Raman Lidar measuring tropospheric temperature profiles with many rotational Raman lines]. Su J; Zhang YC; Hu SX; Cao KF; Zhao PT; Wang SL; Xie J Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Aug; 28(8):1781-5. PubMed ID: 18975802 [TBL] [Abstract][Full Text] [Related]
13. Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator. Behrendt A; Reichardt J Appl Opt; 2000 Mar; 39(9):1372-8. PubMed ID: 18338020 [TBL] [Abstract][Full Text] [Related]
14. Retrieval and Analysis of Atmospheric Temperature Using a Rotational Raman Lidar Observation. Liu YL; Xie CB; Shang Z; Zhao M; Cao KF; Sun YS Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Jun; 36(6):1978-86. PubMed ID: 30053364 [TBL] [Abstract][Full Text] [Related]
15. Fabry-Perot etalon-based ultraviolet trifrequency high-spectral-resolution lidar for wind, temperature, and aerosol measurements from 0.2 to 35 km altitude. Shen F; Xie C; Qiu C; Wang B Appl Opt; 2018 Nov; 57(31):9328-9340. PubMed ID: 30461973 [TBL] [Abstract][Full Text] [Related]
16. Preliminary exploration of atmospheric water vapor, liquid water and ice water by ultraviolet Raman lidar. Yufeng W; Qing W; Dengxin H Opt Express; 2019 Dec; 27(25):36311-36328. PubMed ID: 31873413 [TBL] [Abstract][Full Text] [Related]
17. Classification of particle effective shape ratios in cirrus clouds based on the lidar depolarization ratio. Noel V; Chepfer H; Ledanois G; Delaval A; Flamant PH Appl Opt; 2002 Jul; 41(21):4245-57. PubMed ID: 12148751 [TBL] [Abstract][Full Text] [Related]
18. Examination of the traditional Raman lidar technique. I. Evaluating the temperature-dependent lidar equations. Whiteman DN Appl Opt; 2003 May; 42(15):2571-92. PubMed ID: 12776994 [TBL] [Abstract][Full Text] [Related]
19. Temperature measurement of cloud or haze layers based on Raman rotational and vibrational spectra. Li Q; Di H; Hua D; Yan Q; Yuan Y; Yang T Opt Express; 2022 Jun; 30(13):23124-23137. PubMed ID: 36224999 [TBL] [Abstract][Full Text] [Related]
20. Future Performance of Ground-Based and Airborne Water-Vapor Differential Absorption Lidar. II. Simulations of the Precision of a Near-Infrared, High-Power System. Wulfmeyer V; Walther C Appl Opt; 2001 Oct; 40(30):5321-36. PubMed ID: 18364812 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]