These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 29715784)
21. Stratospheric temperature monitoring using a vibrational Raman lidar. Part 1: aerosols and ozone interferences. Faduilhe D; Keckhut P; Bencherif H; Robert L; Baldy S J Environ Monit; 2005 Apr; 7(4):357-64. PubMed ID: 15798803 [TBL] [Abstract][Full Text] [Related]
22. Airborne remote sensing of tropospheric water vapor with a near-infrared differential absorption lidar system. Ehret G; Kiemle C; Renger W; Simmet G Appl Opt; 1993 Aug; 32(24):4534-51. PubMed ID: 20830116 [TBL] [Abstract][Full Text] [Related]
23. Emerging Technologies and Synergies for Airborne and Space-Based Measurements of Water Vapor Profiles. Nehrir AR; Kiemle C; Lebsock MD; Kirchengast G; Buehler SA; Löhnert U; Liu CL; Hargrave PC; Barrera-Verdejo M; Winker DM Surv Geophys; 2017; 38(6):1445-1482. PubMed ID: 31997843 [TBL] [Abstract][Full Text] [Related]
24. Analysis of differential absorption lidar from the space shuttle. Remsberg EE; Gordley LL Appl Opt; 1978 Feb; 17(4):624-30. PubMed ID: 20197838 [TBL] [Abstract][Full Text] [Related]
25. Lateral scanning Raman scattering lidar for accurate measurement of atmospheric temperature and water vapor from ground to height of interest. Yang F; Gao F; Zhang C; Li X; Gao X; Hua D; Wang L; Xin W; Stanič S Opt Lett; 2023 May; 48(10):2595-2598. PubMed ID: 37186717 [TBL] [Abstract][Full Text] [Related]
26. Modeling of intensity-modulated continuous-wave laser absorption spectrometer systems for atmospheric CO(2) column measurements. Lin B; Ismail S; Wallace Harrison F; Browell EV; Nehrir AR; Dobler J; Moore B; Refaat T; Kooi SA Appl Opt; 2013 Oct; 52(29):7062-77. PubMed ID: 24217721 [TBL] [Abstract][Full Text] [Related]
27. Relative-humidity profiling in the troposphere with a Raman lidar. Mattis I; Ansmann A; Althausen D; Jaenisch V; Wandinger U; Müller D; Arshinov YF; Bobrovnikov SM; Serikov IB Appl Opt; 2002 Oct; 41(30):6451-62. PubMed ID: 12396198 [TBL] [Abstract][Full Text] [Related]
28. Increasing horizontal resolution in numerical weather prediction and climate simulations: illusion or panacea? Wedi NP Philos Trans A Math Phys Eng Sci; 2014 Jun; 372(2018):20130289. PubMed ID: 24842035 [TBL] [Abstract][Full Text] [Related]
29. Lidar measurements taken with a large-aperture liquid mirror. 2. Sodium resonance-fluorescence system. Argall PS; Vassiliev ON; Sica RJ; Mwangi MM Appl Opt; 2000 May; 39(15):2393-400. PubMed ID: 18345149 [TBL] [Abstract][Full Text] [Related]
30. Laser-based air data system for aircraft control using Raman and elastic backscatter for the measurement of temperature, density, pressure, moisture, and particle backscatter coefficient. Fraczek M; Behrendt A; Schmitt N Appl Opt; 2012 Jan; 51(2):148-66. PubMed ID: 22270512 [TBL] [Abstract][Full Text] [Related]
31. Lidar technique for remote measurement of temperature by use of vibrational-rotational Raman spectroscopy. Heaps WS; Burris J; French JA Appl Opt; 1997 Dec; 36(36):9402-5. PubMed ID: 18264501 [TBL] [Abstract][Full Text] [Related]
32. Simulations of the observation of clouds and aerosols with the Experimental Lidar in Space Equipment system. Liu Z; Voelger P; Sugimoto N Appl Opt; 2000 Jun; 39(18):3120-37. PubMed ID: 18345243 [TBL] [Abstract][Full Text] [Related]
33. Correction method for temperature measurements inside clouds using rotational Raman lidar. Li Q; Di H; Chen N; Cheng X; Yang J; Guo Y; Hua D Opt Express; 2023 Dec; 31(26):44088-44101. PubMed ID: 38178488 [TBL] [Abstract][Full Text] [Related]
35. Short-range optical air data measurements for aircraft control using rotational Raman backscatter. Fraczek M; Behrendt A; Schmitt N Opt Express; 2013 Jul; 21(14):16398-414. PubMed ID: 23938491 [TBL] [Abstract][Full Text] [Related]
36. Diurnal temperature variations in the lower troposphere as measured by an all-day-operational pure rotational Raman lidar. Pan X; Yi F; Liu F; Zhang Y; Yan Y Appl Opt; 2020 Oct; 59(28):8688-8696. PubMed ID: 33104551 [TBL] [Abstract][Full Text] [Related]
37. Design of Lidar Data Acquisition and Control System in High Repetition Rate and Photon-Counting Mode: Providing Testing for Space-Borne Lidar. Cheng L; Xie C; Zhao M; Li L; Yang H; Fang Z; Chen J; Liu D; Wang Y Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632115 [TBL] [Abstract][Full Text] [Related]
38. Perturbative solution to the two-component atmosphere DIAL equation for improving the accuracy of the retrieved absorption coefficient. Bunn CE; Repasky KS; Hayman M; Stillwell RA; Spuler SM Appl Opt; 2018 Jun; 57(16):4440-4450. PubMed ID: 29877391 [TBL] [Abstract][Full Text] [Related]
39. Current Research in Lidar Technology Used for the Remote Sensing of Atmospheric Aerosols. Comerón A; Muñoz-Porcar C; Rocadenbosch F; Rodríguez-Gómez A; Sicard M Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28632170 [TBL] [Abstract][Full Text] [Related]
40. Modeling the performance of a diode laser-based (DLB) micro-pulse differential absorption lidar (MPD) for temperature profiling in the lower troposphere. Repasky KS; Bunn CE; Hayman M; Stillwell RA; Spuler SM Opt Express; 2019 Nov; 27(23):33543-33563. PubMed ID: 31878421 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]