These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 29715857)

  • 61. Electrically tunable infrared filter based on the liquid crystal Fabry-Perot structure for spectral imaging detection.
    Zhang H; Muhammmad A; Luo J; Tong Q; Lei Y; Zhang X; Sang H; Xie C
    Appl Opt; 2014 Sep; 53(25):5632-9. PubMed ID: 25321356
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Prism-coupled Cherenkov phase-matched terahertz wave generation using a DAST crystal.
    Suizu K; Shibuya T; Uchida H; Kawase K
    Opt Express; 2010 Feb; 18(4):3338-44. PubMed ID: 20389341
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Responsivity enhancement of a strained silicon field-effect transistor detector at 0.3 THz using the terajet effect.
    Minin IV; Minin OV; Salvador-Sánchez J; Delgado-Notario JA; Calvo-Gallego J; Ferrando-Bataller M; Fobelets K; Velázquez-Pérez JE; Meziani YM
    Opt Lett; 2021 Jul; 46(13):3061-3064. PubMed ID: 34197379
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Dual color infrared photodetector with superconducting metamaterials.
    Chen B; Pan H; Zhu L; Xu H; Wang H; Zhang L; Yan X; Ma C; Xu X; Lu W; An Z; Song Y
    Opt Express; 2023 Feb; 31(5):7440-7449. PubMed ID: 36859874
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Tunable Fabry-Perot interferometer operated in the terahertz range based on an effective refractive index control using pitch-variable subwavelength gratings.
    Huang Y; Liu Y; Okatani T; Inomata N; Kanamori Y
    Opt Lett; 2024 Feb; 49(4):951-954. PubMed ID: 38359224
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A microfabricated low-profile wideband antenna array for terahertz communications.
    Luk KM; Zhou SF; Li YJ; Wu F; Ng KB; Chan CH; Pang SW
    Sci Rep; 2017 Apr; 7(1):1268. PubMed ID: 28455511
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Family of graphene-assisted resonant surface optical excitations for terahertz devices.
    Lin IT; Liu JM; Tsai HC; Wu KH; Syu JY; Su CY
    Sci Rep; 2016 Oct; 6():35467. PubMed ID: 27739504
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Optically tunable Fano resonance in a grating-based Fabry-Perot cavity-coupled microring resonator on a silicon chip.
    Zhang W; Li W; Yao J
    Opt Lett; 2016 Jun; 41(11):2474-7. PubMed ID: 27244392
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Design of an efficient terahertz source using triply resonant nonlinear photonic crystal cavities.
    Burgess IB; Zhang Y; McCutcheon MW; Rodriguez AW; Bravo-Abad J; Johnson SG; Loncar M
    Opt Express; 2009 Oct; 17(22):20099-108. PubMed ID: 19997233
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Influence of dielectric substrate on the responsivity of microstrip dipole-antenna-coupled infrared microbolometers.
    Codreanu I; Boreman GD
    Appl Opt; 2002 Apr; 41(10):1835-40. PubMed ID: 11936778
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Antenna-coupled field-effect transistors as detectors for terahertz near-field microscopy.
    Wiecha MM; Kapoor R; Chernyadiev AV; Ikamas K; Lisauskas A; Roskos HG
    Nanoscale Adv; 2021 Mar; 3(6):1717-1724. PubMed ID: 36132567
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Terahertz Detection by Asymmetric Dual Grating Gate Bilayer Graphene FETs with Integrated Bowtie Antenna.
    Abidi E; Khan A; Delgado-Notario JA; Clericó V; Calvo-Gallego J; Taniguchi T; Watanabe K; Otsuji T; Velázquez JE; Meziani YM
    Nanomaterials (Basel); 2024 Feb; 14(4):. PubMed ID: 38392756
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Resonant terahertz probes for near-field scattering microscopy.
    Siday T; Natrella M; Wu J; Liu H; Mitrofanov O
    Opt Express; 2017 Oct; 25(22):27874-27885. PubMed ID: 29092256
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Absolute-length determination of a long-baseline Fabry-Perot cavity by means of resonating modulation sidebands.
    Araya A; Telada S; Tochikubo K; Taniguchi S; Takahashi R; Kawabe K; Tatsumi D; Yamazaki T; Kawamura S; Miyoki S; Moriwaki S; Musha M; Nagano S; Fujimoto MK; Horikoshi K; Mio N; Naito Y; Takamori A; Yamamoto K
    Appl Opt; 1999 May; 38(13):2848-56. PubMed ID: 18319865
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Active terahertz metamaterial devices.
    Chen HT; Padilla WJ; Zide JM; Gossard AC; Taylor AJ; Averitt RD
    Nature; 2006 Nov; 444(7119):597-600. PubMed ID: 17136089
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A Fabry-Pérot interferometer with wire-grid polarizers as beamsplitters at terahertz frequencies.
    Harrison H; Lancaster AJ; Konoplev IV; Doucas G; Aryshev A; Shevelev M; Terunuma N; Urakawa J; Huggard PG
    Rev Sci Instrum; 2018 Mar; 89(3):035116. PubMed ID: 29604734
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Monolithic resonant CMOS fully integrated triple-band THz thermal detector.
    Wang X
    Opt Express; 2020 Jul; 28(15):22630-22641. PubMed ID: 32752520
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Omni-resonant optical micro-cavity.
    Shabahang S; Kondakci HE; Villinger ML; Perlstein JD; El Halawany A; Abouraddy AF
    Sci Rep; 2017 Sep; 7(1):10336. PubMed ID: 28871153
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Metallic metasurface for high efficiency optical phase control in transmission mode.
    Hu X; Wei X
    Opt Express; 2017 Jun; 25(13):15208-15215. PubMed ID: 28788950
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Room-Temperature CMOS Monolithic Resonant Triple-Band Terahertz Thermal Detector.
    Wang X; Li TP; Yan SX; Wang J
    Micromachines (Basel); 2023 Mar; 14(3):. PubMed ID: 36985034
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.