These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 29715869)

  • 1. Theoretical description and design of nanomaterial slab waveguides: application to compensation of optical diffraction.
    Kivijärvi V; Nyman M; Shevchenko A; Kaivola M
    Opt Express; 2018 Apr; 26(7):9134-9147. PubMed ID: 29715869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unidirectional sub-diffraction waveguiding based on optical spin-orbit coupling in subwavelength plasmonic waveguides.
    Lefier Y; Grosjean T
    Opt Lett; 2015 Jun; 40(12):2890-3. PubMed ID: 26076288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of a Broadband Difference Interferometer Based on Low-Cost Polymer Slab Waveguides.
    Gut K
    Nanomaterials (Basel); 2019 May; 9(5):. PubMed ID: 31083524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of radially-polarized terahertz pulses for coupling into coaxial waveguides.
    Navarro-Cía M; Wu J; Liu H; Mitrofanov O
    Sci Rep; 2016 Dec; 6():38926. PubMed ID: 27941845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microspectrometer with slab-waveguide transmission gratings.
    Sander D; Blume O; Möller J
    Appl Opt; 1996 Jul; 35(21):4096-101. PubMed ID: 21102814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Achromatic flat optical components via compensation between structure and material dispersions.
    Li Y; Li X; Pu M; Zhao Z; Ma X; Wang Y; Luo X
    Sci Rep; 2016 Jan; 6():19885. PubMed ID: 26794855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental and theoretical analysis of THz-frequency, direction-dependent, phonon polariton modes in a subwavelength, anisotropic slab waveguide.
    Yang C; Wu Q; Xu J; Nelson KA; Werley CA
    Opt Express; 2010 Dec; 18(25):26351-64. PubMed ID: 21164986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Propagation loss spectroscopy on single nanowire active waveguides.
    Piccione B; van Vugt LK; Agarwal R
    Nano Lett; 2010 Jun; 10(6):2251-6. PubMed ID: 20481610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of the transmission line matrix method to the analysis of slab and channel optical waveguides.
    Moniri-Ardakani SM; Glytsis EN
    Appl Opt; 1995 May; 34(15):2704-11. PubMed ID: 21052415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modal analysis and device considerations of thin high index dielectric overlay slab waveguides.
    Gauthier RC; Medri KE; Newman SR
    Appl Opt; 2012 Mar; 51(9):1266-75. PubMed ID: 22441471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of channel waveguides from sol-gel-processed polyvinylpyrrolidone/ SiO(2) composite materials.
    Yoshida M; Prasad PN
    Appl Opt; 1996 Mar; 35(9):1500-6. PubMed ID: 21085265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical wave parameters for spatially dispersive and anisotropic nanomaterials.
    Shevchenko A; Nyman M; Kivijärvi V; Kaivola M
    Opt Express; 2017 Apr; 25(8):8550-8562. PubMed ID: 28437933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dielectric tube waveguides with absorptive cladding for broadband, low-dispersion and low loss THz guiding.
    Bao H; Nielsen K; Bang O; Jepsen PU
    Sci Rep; 2015 Jan; 5():7620. PubMed ID: 25557284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light diffraction in slab waveguide lenses simulated with the stepwise angular spectrum method.
    Ebers L; Hammer M; Förstner J
    Opt Express; 2020 Nov; 28(24):36361-36379. PubMed ID: 33379731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lossy multilayer channel optical waveguides analyzed by the transmission line matrix method.
    Moniri-Ardakani SM; Glytsis EN
    Appl Opt; 1996 Oct; 35(30):5979-87. PubMed ID: 21127612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rib waveguides for trapping and transport of particles.
    Ahluwalia BS; Helle ØI; Hellesø OG
    Opt Express; 2016 Mar; 24(5):4477-4487. PubMed ID: 29092275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Derivation of dimensional and material requirements for propagation and processing of temporal optical solitons in planar geometry channel waveguides.
    Sala AL; Mirkov MG; Bagley BG; Deck RT
    Appl Opt; 1997 Oct; 36(30):7846-52. PubMed ID: 18264311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Terahertz wave transmission in flexible polystyrene-lined hollow metallic waveguides for the 2.5-5 THz band.
    Navarro-Cía M; Vitiello MS; Bledt CM; Melzer JE; Harrington JA; Mitrofanov O
    Opt Express; 2013 Oct; 21(20):23748-55. PubMed ID: 24104287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simplified broadband coupling approach applied to chemically robust sol-gel, planar integrated optical waveguides.
    Bradshaw JT; Mendes SB; Saavedra SS
    Anal Chem; 2002 Apr; 74(8):1751-9. PubMed ID: 11985305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sub-10 nm beam confinement by X-ray waveguides: design, fabrication and characterization of optical properties.
    Krüger SP; Neubauer H; Bartels M; Kalbfleisch S; Giewekemeyer K; Wilbrandt PJ; Sprung M; Salditt T
    J Synchrotron Radiat; 2012 Mar; 19(Pt 2):227-36. PubMed ID: 22338684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.