These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

26 related articles for article (PubMed ID: 29715904)

  • 1. Nanocavity tuning and formation controlled by the phase change of sub-micron-square GST patterns on Si photonic crystals.
    Uemura T; Chiba H; Yoda T; Moritake Y; Tanaka Y; Ono M; Kuramochi E; Notomi M
    Opt Express; 2024 Jan; 32(2):1802-1824. PubMed ID: 38297724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Normal mode analysis in multi-coupled non-Hermitian optical nanocavities.
    Park KT; Kim KH; Min BJ; No YS
    Sci Rep; 2023 Oct; 13(1):17510. PubMed ID: 37845301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanophotonic filters and integrated networks in flexible 2D polymer photonic crystals.
    Gan X; Clevenson H; Tsai CC; Li L; Englund D
    Sci Rep; 2013; 3():2145. PubMed ID: 23828320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Slow-Light-Enhanced Polarization Division Multiplexing Infrared Absorption Spectroscopy for On-Chip Wideband Multigas Detection in a 1D Photonic Crystal Waveguide.
    Peng Z; Huang Y; Zheng K; Min Y; Zhao H; Pi M; Song F; Zheng C; Zhang Y; Chang Z; Wang Y
    Anal Chem; 2024 Feb; 96(8):3445-3453. PubMed ID: 38364860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and fabrication of a coupled high-Q photonic nanocavity system with large coupling coefficients.
    Mitsuhashi R; Song BS; Inoue K; Asano T; Noda S
    Opt Express; 2024 Mar; 32(6):10630-10647. PubMed ID: 38571269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manufacture reliability assessment of Si photonic foundry fabricated slow-light photonic crystal waveguides.
    Begović A; Maksumić A; Chen A; Fahrenkopf NM; Baiocco C; Huang ZR
    Appl Opt; 2024 Apr; 63(12):3359-3365. PubMed ID: 38856488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Twisted lattice nanocavity with theoretical quality factor exceeding 200 billion.
    Ma RM; Luan HY; Zhao ZW; Mao WZ; Wang SL; Ouyang YH; Shao ZK
    Fundam Res; 2023 Jul; 3(4):537-543. PubMed ID: 38933544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Q two-dimensional photonic crystal nanocavity on glass with an upper glass thin film.
    Kawata R; Fujita A; Pholsen N; Iwamoto S; Ota Y
    Opt Lett; 2024 May; 49(9):2345-2348. PubMed ID: 38691715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silicon nanocavity with a quality factor of 6.7 million fabricated by a CMOS-compatible process.
    Katsura M; Ota Y; Mitsuhashi R; Ohtsuka M; Seki M; Yokoyama N; Asano T; Noda S; Okano M; Takahashi Y
    Opt Express; 2023 Nov; 31(23):37993-38003. PubMed ID: 38017917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Realizing tight-binding Hamiltonians using site-controlled coupled cavity arrays.
    Saxena A; Manna A; Trivedi R; Majumdar A
    Nat Commun; 2023 Aug; 14(1):5260. PubMed ID: 37644050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Revealing the Binding Events of Single Proteins on Exosomes Using Nanocavity Antennas beyond Zero-Mode Waveguides.
    Gao Q; Zang P; Li J; Zhang W; Zhang Z; Li C; Yao J; Li C; Yang Q; Li S; Guo Z; Zhou L
    ACS Appl Mater Interfaces; 2023 Oct; 15(42):49511-49526. PubMed ID: 37812455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultra-narrowband and rainbow-free mid-infrared thermal emitters enabled by a flat band design in distorted photonic lattices.
    Sun K; Cai Y; Huang L; Han Z
    Nat Commun; 2024 May; 15(1):4019. PubMed ID: 38740756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultra-wide-band structural slow light.
    Lai Y; Mohamed MS; Gao B; Minkov M; Boyd RW; Savona V; Houdré R; Badolato A
    Sci Rep; 2018 Oct; 8(1):14811. PubMed ID: 30287913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wideband slow light with low dispersion in asymmetric slotted photonic crystal waveguides.
    Liu B; Wang T; Tang J; Li X; Dong C; He Y
    Appl Opt; 2013 Dec; 52(34):8394-401. PubMed ID: 24513844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large pulse delay and small group velocity achieved using ultrahigh-Q photonic crystal nanocavities.
    Tanabe T; Notomi M; Kuramochi E; Taniyama H
    Opt Express; 2007 Jun; 15(12):7826-39. PubMed ID: 19547110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic tuning of the Q factor in a photonic crystal nanocavity through photonic transitions.
    Wang B; Wu JF; Li C; Li ZY
    Opt Lett; 2018 Aug; 43(16):3945-3948. PubMed ID: 30106923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quasinormal mode theory and design of on-chip single photon emitters in photonic crystal coupled-cavity waveguides.
    Malhotra T; Ge RC; Kamandar Dezfouli M; Badolato A; Vamivakas N; Hughes S
    Opt Express; 2016 Jun; 24(12):13574-83. PubMed ID: 27410373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wideband slow short-pulse propagation in one-thousand slantingly coupled L3 photonic crystal nanocavities.
    Kuramochi E; Matsuda N; Nozaki K; Park AHK; Takesue H; Notomi M
    Opt Express; 2018 Apr; 26(8):9552-9564. PubMed ID: 29715904
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.