These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 29715909)

  • 1. Template-stripped nanoaperture tweezer integrated with optical fiber.
    Ehtaiba JM; Gordon R
    Opt Express; 2018 Apr; 26(8):9607-9613. PubMed ID: 29715909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beaming light through a bow-tie nanoaperture at the tip of a single-mode optical fiber.
    Ehtaiba JM; Gordon R
    Opt Express; 2019 May; 27(10):14112-14120. PubMed ID: 31163864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-Power Optical Trapping of Nanoparticles and Proteins with Resonant Coaxial Nanoaperture Using 10 nm Gap.
    Yoo D; Gurunatha KL; Choi HK; Mohr DA; Ertsgaard CT; Gordon R; Oh SH
    Nano Lett; 2018 Jun; 18(6):3637-3642. PubMed ID: 29763566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical trapping of single nano-size particles using a plasmonic nanocavity.
    Zhang J; Lu F; Zhang W; Yu W; Zhu W; Premaratne M; Mei T; Xiao F; Zhao J
    J Phys Condens Matter; 2020 Aug; 32(47):. PubMed ID: 32870814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cleaved fiber optic double nanohole optical tweezers for trapping nanoparticles.
    Gelfand RM; Wheaton S; Gordon R
    Opt Lett; 2014 Nov; 39(22):6415-7. PubMed ID: 25490482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of Optical Information Recording Mechanism Based on Localized Surface Plasmon Resonance with Au Nanoparticles Array Deposited Media and Ridge-Type Nanoaperture.
    Kang SM
    Nanomaterials (Basel); 2022 Apr; 12(8):. PubMed ID: 35458057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Template stripped double nanohole in a gold film for nano-optical tweezers.
    Zehtabi-Oskuie A; Zinck AA; Gelfand RM; Gordon R
    Nanotechnology; 2014 Dec; 25(49):495301. PubMed ID: 25407447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fiber-integrated optical nano-tweezer based on a bowtie-aperture nano-antenna at the apex of a SNOM tip.
    El Eter A; Hameed NM; Baida FI; Salut R; Filiatre C; Nedeljkovic D; Atie E; Bole S; Grosjean T
    Opt Express; 2014 Apr; 22(8):10072-80. PubMed ID: 24787888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Grating-flanked plasmonic coaxial apertures for efficient fiber optical tweezers.
    Saleh AA; Sheikhoelislami S; Gastelum S; Dionne JA
    Opt Express; 2016 Sep; 24(18):20593-603. PubMed ID: 27607663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoaperture fabrication in ultra-smooth single-grain gold films with helium ion beam lithography.
    Zhang C; Li J; Belianinov A; Ma Z; Renshaw CK; Gelfand RM
    Nanotechnology; 2020 Nov; 31(46):465302. PubMed ID: 32857734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fringe Dielectrophoresis Nanoaperture Optical Trapping with Order of Magnitude Speed-Up for Unmodified Proteins.
    Babaei E; Wright D; Gordon R
    Nano Lett; 2023 Apr; 23(7):2877-2882. PubMed ID: 36999922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink.
    Wang K; Schonbrun E; Steinvurzel P; Crozier KB
    Nat Commun; 2011 Sep; 2():469. PubMed ID: 21915111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the optimum form of an aperture for a confinement of the optically excited electric near field.
    Bortchagovsky E; Colas des Francs G; Naber A; Fischer UC
    J Microsc; 2008 Feb; 229(Pt 2):223-7. PubMed ID: 18304076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Label-free free-solution nanoaperture optical tweezers for single molecule protein studies.
    Al Balushi AA; Kotnala A; Wheaton S; Gelfand RM; Rajashekara Y; Gordon R
    Analyst; 2015 Jul; 140(14):4760-78. PubMed ID: 25734189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic random nanostructures on fiber tip for trapping live cells and colloidal particles.
    Chen J; Kang Z; Kong SK; Ho HP
    Opt Lett; 2015 Sep; 40(17):3926-9. PubMed ID: 26368677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trapping of Micro Particles in Nanoplasmonic Optical Lattice.
    Bhalothia D; Yang YT
    J Vis Exp; 2017 Sep; (127):. PubMed ID: 28931000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nano-optical trapping using an all-dielectric optical fiber supporting a TEM-like mode.
    Lou Y; Wan X; Pang Y
    Nanotechnology; 2021 Nov; 33(4):. PubMed ID: 34530419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microarrays of near-field optical probes with adjustable dimensions.
    Chovin A; Garrigue P; Pecastaings G; Saadaoui H; Manek-Hönninger I; Sojic N
    Ultramicroscopy; 2006 Jan; 106(2):57-65. PubMed ID: 16182448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Template-Stripped Multifunctional Wedge and Pyramid Arrays for Magnetic Nanofocusing and Optical Sensing.
    Kumar S; Johnson TW; Wood CK; Qu T; Wittenberg NJ; Otto LM; Shaver J; Long NJ; Victora RH; Edel JB; Oh SH
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):9319-26. PubMed ID: 26837912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonic nanofocusing with a metallic pyramid and an integrated C-shaped aperture.
    Lindquist NC; Johnson TW; Nagpal P; Norris DJ; Oh SH
    Sci Rep; 2013; 3():1857. PubMed ID: 23676841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.