These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 29715981)

  • 1. Saturation of water reflectance in extremely turbid media based on field measurements, satellite data and bio-optical modelling.
    Luo Y; Doxaran D; Ruddick K; Shen F; Gentili B; Yan L; Huang H
    Opt Express; 2018 Apr; 26(8):10435-10451. PubMed ID: 29715981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristics of water leaving reflectance at ultraviolet wavelengths: radiative transfer simulations.
    Bai R; He X; Bai Y; Li T; Zhu Q; Gong F
    Opt Express; 2020 Sep; 28(20):29714-29729. PubMed ID: 33114864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ spectral response of the Arabian Gulf and Sea of Oman coastal waters to bio-optical properties.
    Al Shehhi MR; Gherboudj I; Ghedira H
    J Photochem Photobiol B; 2017 Oct; 175():235-243. PubMed ID: 28915493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Bio-optical model of total suspended matter based on reflectance in the near infrared wave band for case-II waters].
    Xu JP; Zhang B; Song KS; Wang ZM; Duan HT; Chen M; Yang F; Li FX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Oct; 28(10):2273-7. PubMed ID: 19123387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atmospheric Correction of Satellite GF-1/WFV Imagery and Quantitative Estimation of Suspended Particulate Matter in the Yangtze Estuary.
    Shang P; Shen F
    Sensors (Basel); 2016 Nov; 16(12):. PubMed ID: 27897987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A hybrid approach to estimate chromophoric dissolved organic matter in turbid estuaries from satellite measurements: a case study for Tampa Bay.
    Le C; Hu C
    Opt Express; 2013 Aug; 21(16):18849-71. PubMed ID: 23938799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitivity of inherent optical properties from ocean reflectance inversion models to satellite instrument wavelength suites.
    Werdell PJ; McKinna LIW
    Front Earth Sci (Lausanne); 2019; 7():. PubMed ID: 31380374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global Estimation of Suspended Particulate Matter From Satellite Ocean Color Imagery.
    Wei J; Wang M; Jiang L; Yu X; Mikelsons K; Shen F
    J Geophys Res Oceans; 2021 Aug; 126(8):e2021JC017303. PubMed ID: 35844263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling the effects of near-surface plumes of suspended particulate matter on remote-sensing reflectance of coastal waters.
    Yang Q; Stramski D; He MX
    Appl Opt; 2013 Jan; 52(3):359-74. PubMed ID: 23338181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of suspended particulate matter in turbid coastal waters: application to hyperspectral satellite imagery.
    Zhao J; Cao W; Xu Z; Ye H; Yang Y; Wang G; Zhou W; Sun Z
    Opt Express; 2018 Apr; 26(8):10476-10493. PubMed ID: 29715984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Band shifting for ocean color multi-spectral reflectance data.
    MĂ©lin F; Sclep G
    Opt Express; 2015 Feb; 23(3):2262-79. PubMed ID: 25836095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupled approach for radiometric calibration and parameter retrieval to improve SPM estimations in turbid inland/coastal waters.
    Zhou Q; Li J; Tian L; Song Q; Wei A
    Opt Express; 2020 Feb; 28(4):5567-5586. PubMed ID: 32121775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analyzing the effects of particle size on remotely sensed spectra: a study on optical properties and spectral similarity scale of suspended particulate matters in water.
    Lu Y; Zheng G; Tian Q; Lyu C; Sun S
    Appl Opt; 2013 Feb; 52(4):879-88. PubMed ID: 23385932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Light absorption by suspended particulate matter in Chagan Lake, Jilin].
    Wang YD; Liu DW; Song KS; Zhang B; Wang ZM; Jiang GJ; Tang XG; Lei XC; Wu YQ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Jan; 31(1):162-7. PubMed ID: 21428080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atmospheric correction of satellite ocean color imagery using the ultraviolet wavelength for highly turbid waters.
    He X; Bai Y; Pan D; Tang J; Wang D
    Opt Express; 2012 Aug; 20(18):20754-70. PubMed ID: 23037125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atmospheric correction algorithm over coastal and inland waters based on the red and NIR bands: application to Landsat-8/OLI and VNREDSat-1/NAOMI observations.
    Ngoc DD; Loisel H; DuforĂȘt-Gaurier L; Jamet C; Vantrepotte V; Goyens C; Xuan HC; Minh NN; Van TN
    Opt Express; 2019 Oct; 27(22):31676-31697. PubMed ID: 31684396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Research of coupling effects among various water quality components].
    Zhou GH; Tian GL; Chen J; Li J; Gong AD
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Feb; 30(2):470-5. PubMed ID: 20384148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the remote-sensing reflectance of highly turbid waters.
    Wong J; Liew SC; Wong E; Lee Z
    Appl Opt; 2019 Apr; 58(10):2671-2677. PubMed ID: 31045069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-source high-resolution satellite products in Yangtze Estuary: cross-comparisons and impacts of signal-to-noise ratio and spatial resolution.
    Tang R; Shen F; Pan Y; Ruddick K; Shang P
    Opt Express; 2019 Mar; 27(5):6426-6441. PubMed ID: 30876228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specific inherent optical quantities of complex turbid inland waters, from the perspective of water classification.
    Sun D; Li Y; Wang Q; Le C; Lv H; Huang C; Gong S
    Photochem Photobiol Sci; 2012 Aug; 11(8):1299-312. PubMed ID: 22584274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.