BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 29715984)

  • 1. Estimation of suspended particulate matter in turbid coastal waters: application to hyperspectral satellite imagery.
    Zhao J; Cao W; Xu Z; Ye H; Yang Y; Wang G; Zhou W; Sun Z
    Opt Express; 2018 Apr; 26(8):10476-10493. PubMed ID: 29715984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Qualitative Dynamics of Suspended Particulate Matter in the Changjiang Estuary from Geostationary Ocean Color Images: An Empirical, Regional Modeling Approach.
    Shang D; Xu H
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30501092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simple optical model to estimate suspended particulate matter in Yellow River Estuary.
    Qiu Z
    Opt Express; 2013 Nov; 21(23):27891-904. PubMed ID: 24514305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced POLYMER atmospheric correction algorithm for water-leaving radiance retrievals from hyperspectral/multispectral remote sensing data in inland and coastal waters.
    Karthick M; Shanmugam P; He X
    Opt Express; 2024 Feb; 32(5):7659-7681. PubMed ID: 38439443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global Estimation of Suspended Particulate Matter From Satellite Ocean Color Imagery.
    Wei J; Wang M; Jiang L; Yu X; Mikelsons K; Shen F
    J Geophys Res Oceans; 2021 Aug; 126(8):e2021JC017303. PubMed ID: 35844263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-frequency and tidal period observations of suspended particulate matter in coastal waters by AHI/Himawari-8.
    Ding X; He X; Bai Y; Zhu Q; Gong F; Li H; Li J
    Opt Express; 2020 Sep; 28(19):27387-27404. PubMed ID: 32988034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Satellite observations reveal anthropogenic pressure significantly affects the suspended particulate matter concentrations in coastal waters of Hainan Island.
    Zhong R; Liu S; Chen S; Zhao L; Yang D
    J Environ Manage; 2024 Jul; 365():121617. PubMed ID: 38968896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hybrid approach to estimate chromophoric dissolved organic matter in turbid estuaries from satellite measurements: a case study for Tampa Bay.
    Le C; Hu C
    Opt Express; 2013 Aug; 21(16):18849-71. PubMed ID: 23938799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Reconstruction of Water Hyperspectral Remote Sensing Reflectance Based on Sparse Representation and Its Application].
    Li Y; Li YM; Guo YL; Zhang YL; Zhang YB; Hu YD; Xia Z
    Huan Jing Ke Xue; 2019 Jan; 40(1):200-210. PubMed ID: 30628276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupled approach for radiometric calibration and parameter retrieval to improve SPM estimations in turbid inland/coastal waters.
    Zhou Q; Li J; Tian L; Song Q; Wei A
    Opt Express; 2020 Feb; 28(4):5567-5586. PubMed ID: 32121775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Short-term Influences on Suspended Particulate Matter Distribution in the Northern Gulf of Mexico: Satellite and Model Observations.
    D'Sa EJ; Ko DS
    Sensors (Basel); 2008 Jul; 8(7):4249-4264. PubMed ID: 27879933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of Polymer Atmospheric Correction Algorithm for Hyperspectral Remote Sensing Imagery over Coastal Waters.
    Soppa MA; Silva B; Steinmetz F; Keith D; Scheffler D; Bohn N; Bracher A
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34208507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interference of CDOM in remote sensing of suspended particulate matter (SPM) based on MODIS in the Persian Gulf and Oman Sea.
    Mohammadpour G; Pirasteh S
    Mar Pollut Bull; 2021 Dec; 173(Pt A):113104. PubMed ID: 34872170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing.
    Wang M; Shi W
    Opt Express; 2007 Nov; 15(24):15722-33. PubMed ID: 19550856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-source high-resolution satellite products in Yangtze Estuary: cross-comparisons and impacts of signal-to-noise ratio and spatial resolution.
    Tang R; Shen F; Pan Y; Ruddick K; Shang P
    Opt Express; 2019 Mar; 27(5):6426-6441. PubMed ID: 30876228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. UV-NIR approach with non-zero water-leaving radiance approximation for atmospheric correction of satellite imagery in inland and coastal zones.
    Singh RK; Shanmugam P; He X; Schroeder T
    Opt Express; 2019 Aug; 27(16):A1118-A1145. PubMed ID: 31510495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vicarious calibrations of HICO data acquired from the International Space Station.
    Gao BC; Li RR; Lucke RL; Davis CO; Bevilacqua RM; Korwan DR; Montes MJ; Bowles JH; Corson MR
    Appl Opt; 2012 May; 51(14):2559-67. PubMed ID: 22614474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human impact on suspended particulate matter in the Yellow River Estuary, China: Evidence from remote sensing data fusion using an improved spatiotemporal fusion method.
    Li P; Ke Y; Wang D; Ji H; Chen S; Chen M; Lyu M; Zhou D
    Sci Total Environ; 2021 Jan; 750():141612. PubMed ID: 33182189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atmospheric correction of HJ-1 CCD imagery over turbid lake waters.
    Zhang M; Tang J; Dong Q; Duan H; Shen Q
    Opt Express; 2014 Apr; 22(7):7906-24. PubMed ID: 24718166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Innovative GOCI algorithm to derive turbidity in highly turbid waters: a case study in the Zhejiang coastal area.
    Qiu Z; Zheng L; Zhou Y; Sun D; Wang S; Wu W
    Opt Express; 2015 Sep; 23(19):A1179-93. PubMed ID: 26406748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.