These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 29716037)

  • 1. Validation of the particle size distribution obtained with the laser in-situ scattering and transmission (LISST) meter in flow-through mode.
    Boss E; Haëntjens N; Westberry TK; Karp-Boss L; Slade WH
    Opt Express; 2018 Apr; 26(9):11125-11136. PubMed ID: 29716037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calibrated near-forward volume scattering function obtained from the LISST particle sizer.
    Slade WH; Boss ES
    Opt Express; 2006 Apr; 14(8):3602-15. PubMed ID: 19516507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical assessment of particle size and composition in the Santa Barbara Channel, California.
    Kostadinov TS; Siegel DA; Maritorena S; Guillocheau N
    Appl Opt; 2012 Jun; 51(16):3171-89. PubMed ID: 22695548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of particle aggregation and disaggregation on their inherent optical properties.
    Slade WH; Boss E; Russo C
    Opt Express; 2011 Apr; 19(9):7945-59. PubMed ID: 21643044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectral attenuation and backscattering as indicators of average particle size.
    Slade WH; Boss E
    Appl Opt; 2015 Aug; 54(24):7264-77. PubMed ID: 26368762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size distribution, sources, and seasonality of suspended particles in southern California marine bathing waters.
    Ahn JH; Grant SB
    Environ Sci Technol; 2007 Feb; 41(3):695-702. PubMed ID: 17328172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calibration of the LISST-VSF to derive the volume scattering functions in clear waters.
    Hu L; Zhang X; Xiong Y; He MX
    Opt Express; 2019 Aug; 27(16):A1188-A1206. PubMed ID: 31510499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of optically derived particle size distributions: scattering over the full angular range versus diffraction at near forward angles.
    Zhang X; Gray DJ; Huot Y; You Y; Bi L
    Appl Opt; 2012 Jul; 51(21):5085-99. PubMed ID: 22858949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of turbulent aggregation on clay floc breakup and implications for the oceanic environment.
    Rau MJ; Ackleson SG; Smith GB
    PLoS One; 2018; 13(12):e0207809. PubMed ID: 30521537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Semi-analytical modeling and parameterization of particulates-in-water phase function for forward angles.
    Sahu SK; Shanmugam P
    Opt Express; 2015 Aug; 23(17):22291-307. PubMed ID: 26368201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Method for the determination of preferential orientation of marine particles from laser diffraction measurements.
    Font-Muñoz JS; Jeanneret R; Tuval I; Basterretxea G
    Opt Express; 2020 Apr; 28(9):14085-14099. PubMed ID: 32403870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of suspended particulate-size distribution on the backscattering ratio in the remote sensing of seawater.
    Risović D
    Appl Opt; 2002 Nov; 41(33):7092-101. PubMed ID: 12463257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variation of Suspended Particles in the Bottom Layer of the East China Sea with Data from Seafloor Observatory.
    Shang D; Qin R; Xu H; Xu C; Sun K; Zhou Y
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31775312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [New Algorithms to Separate the Contribution of Petroleum Substances and Suspended Particulate Matter on the Scattering Coefficient Spectrum from Mixed Water].
    Huang MF; Xing XF; Song QJ; Liu Y
    Guang Pu Xue Yu Guang Pu Fen Xi; 2017 Jan; 37(1):205-11. PubMed ID: 30196588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of a flow cytometry method to determine size and real refractive index distributions in natural marine particle populations.
    Agagliate J; Röttgers R; Twardowski MS; McKee D
    Appl Opt; 2018 Mar; 57(7):1705-1716. PubMed ID: 29522024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Forward modeling of inherent optical properties from flow cytometry estimates of particle size and refractive index.
    Agagliate J; Lefering I; McKee D
    Appl Opt; 2018 Mar; 57(8):1777-1788. PubMed ID: 29521959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shape of the particulate beam attenuation spectrum and its inversion to obtain the shape of the particulate size distribution.
    Boss E; Twardowski MS; Herring S
    Appl Opt; 2001 Sep; 40(27):4885-93. PubMed ID: 18360531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variability of particle size distribution with respect to inherent optical properties in Poyang Lake, China.
    Huang J; Chen X; Jiang T; Yang F; Chen L; Yan L
    Appl Opt; 2016 Aug; 55(22):5821-9. PubMed ID: 27505359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Characteristics and its forming mechanism on grain size distribution of suspended matter at Changjiang Estuary].
    Pang CG; Yu W; Yang Y
    Huan Jing Ke Xue; 2010 Mar; 31(3):618-25. PubMed ID: 20358817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterizing the phytoplankton soup: pump and plumbing effects on the particle assemblage in underway optical seawater systems.
    Cetinić I; Poulton N; Slade WH
    Opt Express; 2016 Sep; 24(18):20703-15. PubMed ID: 27607674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.