These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 29716044)

  • 1. Cooperativity enhancement in buckled-dome microcavities with omnidirectional claddings.
    Al-Sumaidae S; Bitarafan MH; Potts CA; Davis JP; DeCorby RG
    Opt Express; 2018 Apr; 26(9):11201-11212. PubMed ID: 29716044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pressure sensing with high-finesse monolithic buckled-dome microcavities.
    Al-Sumaidae S; Bu L; Hornig GJ; Bitarafan MH; DeCorby RG
    Appl Opt; 2021 Oct; 60(29):9219-9224. PubMed ID: 34624005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On-Chip High-Finesse Fabry-Perot Microcavities for Optical Sensing and Quantum Information.
    Bitarafan MH; DeCorby RG
    Sensors (Basel); 2017 Jul; 17(8):. PubMed ID: 28758967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In-plane coupled Fabry-Perot micro-cavities based on Si-air Bragg mirrors: a theoretical and practical study.
    Ali MN; Sabry YM; Marty F; Bourouina T; Kirah KA; Khalil D
    Appl Opt; 2018 Jun; 57(18):5112-5120. PubMed ID: 30117973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bistability in buckled dome microcavities.
    Bitarafan MH; Ramp H; Potts C; Allen TW; Davis JP; DeCorby RG
    Opt Lett; 2015 Nov; 40(22):5375-8. PubMed ID: 26565878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optofluidic laser array based on stable high-Q Fabry-Pérot microcavities.
    Wang W; Zhou C; Zhang T; Chen J; Liu S; Fan X
    Lab Chip; 2015 Oct; 15(19):3862-9. PubMed ID: 26304622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated waveguide Fabry-Perot microcavities with silicon/air Bragg mirrors.
    Pruessner MW; Stievater TH; Rabinovich WS
    Opt Lett; 2007 Mar; 32(5):533-5. PubMed ID: 17392912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chip-integrated plasmonic cavity-enhanced single nitrogen-vacancy center emission.
    Siampour H; Kumar S; Bozhevolnyi SI
    Nanoscale; 2017 Nov; 9(45):17902-17908. PubMed ID: 29119986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermo-optic tuning and switching in SOI waveguide Fabry-Perot microcavities.
    Pruessner MW; Stievater TH; Ferraro MS; Rabinovich WS
    Opt Express; 2007 Jun; 15(12):7557-63. PubMed ID: 19547081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings.
    Kuramochi E; Taniyama H; Tanabe T; Kawasaki K; Roh YG; Notomi M
    Opt Express; 2010 Jul; 18(15):15859-69. PubMed ID: 20720968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microcavity-controlled single-molecule fluorescence.
    Steiner M; Schleifenbaum F; Stupperich C; Virgilio Failla A; Hartschuh A; Meixner AJ
    Chemphyschem; 2005 Oct; 6(10):2190-6. PubMed ID: 16178039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stable planar mesoscopic photonic crystal cavities.
    Magno G; Monmayrant A; Grande M; Lozes-Dupuy F; Gauthier-Lafaye O; Calò G; Petruzzelli V
    Opt Lett; 2014 Jul; 39(14):4223-6. PubMed ID: 25121692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasound sensing at thermomechanical limits with optomechanical buckled-dome microcavities.
    Hornig GJ; Scheuer KG; Dew EB; Zemp R; DeCorby RG
    Opt Express; 2022 Aug; 30(18):33083-33096. PubMed ID: 36242356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analytical and numerical design of a hybrid Fabry-Perot plano-concave microcavity for hexagonal boron nitride.
    Ortiz-Huerta F; Garay-Palmett K
    Beilstein J Nanotechnol; 2022; 13():1030-1037. PubMed ID: 36247527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of spontaneous emission from the resonant modes of a photonic crystal slab single-defect cavity.
    Ryu HY; Notomi M
    Opt Lett; 2003 Dec; 28(23):2390-2. PubMed ID: 14680192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the spontaneous emission dynamics in Si-nanocrystals-based microdisk resonators.
    Pitanti A; Ghulinyan M; Navarro-Urrios D; Pucker G; Pavesi L
    Phys Rev Lett; 2010 Mar; 104(10):103901. PubMed ID: 20366425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microcavities with suspended subwavelength structured mirrors.
    Naesby A; Dantan A
    Opt Express; 2018 Nov; 26(23):29886-29894. PubMed ID: 30469947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chip-scale spectrometry based on tapered hollow Bragg waveguides.
    DeCorby RG; Ponnampalam N; Epp E; Allen T; McMullin JN
    Opt Express; 2009 Sep; 17(19):16632-45. PubMed ID: 19770879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Abnormal high-Q modes of coupled stadium-shaped microcavities.
    Ryu JW; Lee SY; Kim I; Choi M; Hentschel M; Kim SW
    Opt Lett; 2014 Jul; 39(14):4196-9. PubMed ID: 25121685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated fiber-mirror ion trap for strong ion-cavity coupling.
    Brandstätter B; McClung A; Schüppert K; Casabone B; Friebe K; Stute A; Schmidt PO; Deutsch C; Reichel J; Blatt R; Northup TE
    Rev Sci Instrum; 2013 Dec; 84(12):123104. PubMed ID: 24387417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.