These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 29716206)

  • 1. Principal component analysis acceleration of rovibrational coarse-grain models for internal energy excitation and dissociation.
    Bellemans A; Parente A; Magin T
    J Chem Phys; 2018 Apr; 148(16):164107. PubMed ID: 29716206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupling of state-resolved rovibrational coarse-grain model for nitrogen to stochastic particle method for simulating internal energy excitation and dissociation.
    Torres E; Magin TE
    J Chem Phys; 2018 Nov; 149(17):174106. PubMed ID: 30408979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of a coarse-grain quasi-classical trajectory method. I. Theory and application to N
    Macdonald RL; Jaffe RL; Schwenke DW; Panesi M
    J Chem Phys; 2018 Feb; 148(5):054309. PubMed ID: 29421898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of a coarse-grain quasi-classical trajectory method. II. Comparison against the direct molecular simulation method.
    Macdonald RL; Grover MS; Schwartzentruber TE; Panesi M
    J Chem Phys; 2018 Feb; 148(5):054310. PubMed ID: 29421878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive coarse graining method for energy transfer and dissociation kinetics of polyatomic species.
    Sahai A; Lopez B; Johnston CO; Panesi M
    J Chem Phys; 2017 Aug; 147(5):054107. PubMed ID: 28789554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Boltzmann rovibrational collisional coarse-grained model for internal energy excitation and dissociation in hypersonic flows.
    Munafò A; Panesi M; Magin TE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):023001. PubMed ID: 25353565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Data-Inspired and Physics-Driven Model Reduction for Dissociation: Application to the O
    Venturi S; Sharma MP; Lopez B; Panesi M
    J Phys Chem A; 2020 Oct; 124(41):8359-8372. PubMed ID: 32886505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonequilibrium shock-heated nitrogen flows using a rovibrational state-to-state method.
    Panesi M; Munafò A; Magin TE; Jaffe RL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013009. PubMed ID: 25122371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exhaustive state-specific dissociation study of the N2(Σg+1)+N(S4) system using QCT combined with a neural network method.
    Gu KM; Zhang H; Cheng XL
    J Chem Phys; 2023 Jun; 158(24):. PubMed ID: 37347130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rovibrational internal energy transfer and dissociation of N2(1Σg+)-N(4S(u)) system in hypersonic flows.
    Panesi M; Jaffe RL; Schwenke DW; Magin TE
    J Chem Phys; 2013 Jan; 138(4):044312. PubMed ID: 23387589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy transfer models in nitrogen plasmas: analysis of N₂(X¹Σg⁺)-N(⁴S(u))-e⁻ interaction.
    Heritier KL; Jaffe RL; Laporta V; Panesi M
    J Chem Phys; 2014 Nov; 141(18):184302. PubMed ID: 25399142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. General multi-group macroscopic modeling for thermo-chemical non-equilibrium gas mixtures.
    Liu Y; Panesi M; Sahai A; Vinokur M
    J Chem Phys; 2015 Apr; 142(13):134109. PubMed ID: 25854230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Consistent kinetic-continuum dissociation model I. Kinetic formulation.
    Singh N; Schwartzentruber T
    J Chem Phys; 2020 Jun; 152(22):224302. PubMed ID: 32534557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonequilibrium internal energy distributions during dissociation.
    Singh N; Schwartzentruber T
    Proc Natl Acad Sci U S A; 2018 Jan; 115(1):47-52. PubMed ID: 29255024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rovibrational internal energy transfer and dissociation of high-temperature oxygen mixture.
    Jo SM; Venturi S; Kim JG; Panesi M
    J Chem Phys; 2023 Feb; 158(6):064305. PubMed ID: 36792518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rovibrational-Specific QCT and Master Equation Study on N
    Jo SM; Venturi S; Sharma MP; Munafò A; Panesi M
    J Phys Chem A; 2022 Jun; 126(21):3273-3290. PubMed ID: 35604650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Free energy perturbation study of water dimer dissociation kinetics.
    Ming Y; Lai G; Tong C; Wood RH; Doren DJ
    J Chem Phys; 2004 Jul; 121(2):773-7. PubMed ID: 15260604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling of molecular nitrogen collisions and dissociation processes for direct simulation Monte Carlo.
    Parsons N; Levin DA; van Duin AC; Zhu T
    J Chem Phys; 2014 Dec; 141(23):234307. PubMed ID: 25527935
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.