These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 29716249)

  • 21. The effect of reflector geometry on the acoustic field and bubble dynamics produced by an electrohydraulic shock wave lithotripter.
    Zhou Y; Zhong P
    J Acoust Soc Am; 2006 Jun; 119(6):3625-36. PubMed ID: 16838506
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Numerical and Experimental Evaluation of High-Intensity Focused Ultrasound-Induced Lesions in Liver Tissue Ex Vivo.
    Haddadi S; Ahmadian MT
    J Ultrasound Med; 2018 Jun; 37(6):1481-1491. PubMed ID: 29193279
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nonlinear absorption in biological tissue for high intensity focused ultrasound.
    Liu X; Li J; Gong X; Zhang D
    Ultrasonics; 2006 Dec; 44 Suppl 1():e27-30. PubMed ID: 16844166
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modeling of finite amplitude acoustic waves in closed cavities using the Galerkin method.
    Erickson RR; Zinn BT
    J Acoust Soc Am; 2003 Apr; 113(4 Pt 1):1863-70. PubMed ID: 12703698
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A parametric study of error in the parabolic approximation of focused axisymmetric ultrasound beams.
    Soneson JE
    J Acoust Soc Am; 2012 Jun; 131(6):EL481-6. PubMed ID: 22713025
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Self-demodulation of high-frequency ultrasound.
    Vos HJ; Goertz DE; de Jong N
    J Acoust Soc Am; 2010 Mar; 127(3):1208-17. PubMed ID: 20329819
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method.
    Treeby BE; Jaros J; Rendell AP; Cox BT
    J Acoust Soc Am; 2012 Jun; 131(6):4324-36. PubMed ID: 22712907
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Semi-analytical discontinuous Galerkin finite element method for the calculation of dispersion properties of guided waves in plates.
    Hebaz SE; Benmeddour F; Moulin E; Assaad J
    J Acoust Soc Am; 2018 Jan; 143(1):460. PubMed ID: 29390733
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modeling of an electrohydraulic lithotripter with the KZK equation.
    Averkiou MA; Cleveland RO
    J Acoust Soc Am; 1999 Jul; 106(1):102-12. PubMed ID: 10420620
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Perturbation method for the second-order nonlinear effect of focused acoustic field around a scatterer in an ideal fluid.
    Liu G; Jayathilake PG; Khoo BC
    Ultrasonics; 2014 Feb; 54(2):576-85. PubMed ID: 24070825
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chebyshev polynomial filtered subspace iteration in the discontinuous Galerkin method for large-scale electronic structure calculations.
    Banerjee AS; Lin L; Hu W; Yang C; Pask JE
    J Chem Phys; 2016 Oct; 145(15):154101. PubMed ID: 27782453
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Wave envelopes method for description of nonlinear acoustic wave propagation.
    Wójcik J; Nowicki A; Lewin PA; Bloomfield PE; Kujawska T; Filipczyński L
    Ultrasonics; 2006 Jul; 44(3):310-29. PubMed ID: 16780911
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Extending the Utility of the Parabolic Approximation in Medical Ultrasound Using Wide-Angle Diffraction Modeling.
    Soneson JE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Apr; 64(4):679-687. PubMed ID: 28103552
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Supersonic turbulent flow simulation using a scalable parallel modal discontinuous Galerkin numerical method.
    Houba T; Dasgupta A; Gopalakrishnan S; Gosse R; Roy S
    Sci Rep; 2019 Oct; 9(1):14442. PubMed ID: 31594959
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design of HIFU Transducers for Generating Specified Nonlinear Ultrasound Fields.
    Rosnitskiy PB; Yuldashev PV; Sapozhnikov OA; Maxwell AD; Kreider W; Bailey MR; Khokhlova VA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Feb; 64(2):374-390. PubMed ID: 27775904
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Acoustic shock wave propagation in a heterogeneous medium: a numerical simulation beyond the parabolic approximation.
    Dagrau F; Rénier M; Marchiano R; Coulouvrat F
    J Acoust Soc Am; 2011 Jul; 130(1):20-32. PubMed ID: 21786874
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nonlinear focusing of acoustic shock waves at a caustic cusp.
    Marchiano R; Coulouvrat F; Thomas JL
    J Acoust Soc Am; 2005 Feb; 117(2):566-77. PubMed ID: 15759678
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A contrast source method for nonlinear acoustic wave fields in media with spatially inhomogeneous attenuation.
    Demi L; van Dongen KW; Verweij MD
    J Acoust Soc Am; 2011 Mar; 129(3):1221-30. PubMed ID: 21428485
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Numerical Simulation of Transit-Time Ultrasonic Flowmeters by a Direct Approach.
    Luca A; Marchiano R; Chassaing JC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Jun; 63(6):886-97. PubMed ID: 27019484
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Discontinuous Galerkin methods for nonlinear scalar hyperbolic conservation laws: divided difference estimates and accuracy enhancement.
    Meng X; Ryan JK
    Numer Math (Heidelb); 2017; 136(1):27-73. PubMed ID: 28615748
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.