These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 29716277)

  • 1. Effects of the container on structure function with impedance map analysis of dense scattering media.
    Luchies AC; Oelze ML
    J Acoust Soc Am; 2018 Apr; 143(4):2172. PubMed ID: 29716277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantifying scattering from dense media using two-dimensional impedance maps.
    Tamura K; Mamou J; Yoshida K; Yamaguchi T; Franceschini E
    J Acoust Soc Am; 2020 Sep; 148(3):1681. PubMed ID: 33003867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using two-dimensional impedance maps to study weak scattering in sparse random media.
    Luchies AC; Oelze ML
    J Acoust Soc Am; 2016 Apr; 139(4):1557. PubMed ID: 27106304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Size Polydispersity and Dense Media on Quantitative Ultrasound Estimates.
    Lombard O; Franceschini E
    IEEE Trans Ultrason Ferroelectr Freq Control; 2024 May; 71(5):572-583. PubMed ID: 38526898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extended three-dimensional impedance map methods for identifying ultrasonic scattering sites.
    Mamou J; Oelze ML; O'Brien WD; Zachary JF
    J Acoust Soc Am; 2008 Feb; 123(2):1195-1208. PubMed ID: 18247919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative Characterization of Tissue Microstructure in Concentrated Cell Pellet Biophantoms Based on the Structure Factor Model.
    Franceschini E; Monchy R; Mamou J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Sep; 63(9):1321-1334. PubMed ID: 27046896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Method for Stereological Determination of the Structure Function From Histological Sections of Isotropic Scattering Media.
    Han A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jun; 65(6):1007-1016. PubMed ID: 29856718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative Ultrasound: Scattering Theory.
    Oelze M
    Adv Exp Med Biol; 2023; 1403():19-28. PubMed ID: 37495912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure function for high-concentration biophantoms of polydisperse scatterer sizes.
    Han A; O'Brien W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Feb; 62(2):303-18. PubMed ID: 25643080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasonic backscatter coefficients for weakly scattering, agar spheres in agar phantoms.
    King MR; Anderson JJ; Herd MT; Ma D; Haak A; Wirtzfeld LA; Madsen EL; Zagzebski JA; Oelze ML; Hall TJ; O'Brien WD
    J Acoust Soc Am; 2010 Aug; 128(2):903-8. PubMed ID: 20707460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure Function Estimated From Histological Tissue Sections.
    Han A; O'Brien WD
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Sep; 63(9):1296-305. PubMed ID: 27046871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of tissue microstructure using ultrasonic backscatter: theory and technique for optimization using a Gaussian form factor.
    Oelze ML; Zachary JF; O'Brien WD
    J Acoust Soc Am; 2002 Sep; 112(3 Pt 1):1202-11. PubMed ID: 12243165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying ultrasonic scattering sites from three-dimensional impedance maps.
    Mamou J; Oelze ML; O'Brien WD; Zachary JF
    J Acoust Soc Am; 2005 Jan; 117(1):413-23. PubMed ID: 15704434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative assessment of in vivo breast masses using ultrasound attenuation and backscatter.
    Nam K; Zagzebski JA; Hall TJ
    Ultrason Imaging; 2013 Apr; 35(2):146-61. PubMed ID: 23493613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasound Scattering From Cell-Pellet Biophantoms and Ex Vivo Tumors Provides Insight Into the Cellular Structure Involved in Scattering.
    Muleki-Seya P; O'Brien WD
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Feb; 69(2):637-649. PubMed ID: 34822328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fine-tuning the H-scan for discriminating changes in tissue scatterers.
    Parker KJ; Baek J
    Biomed Phys Eng Express; 2020 May; 6(4):045012. PubMed ID: 33444273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effective scatterer diameter estimates for broad scatterer size distributions.
    Nordberg EP; Hall TJ
    Ultrason Imaging; 2015 Jan; 37(1):3-21. PubMed ID: 24831300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scatterer size estimation in pulse-echo ultrasound using focused sources: theoretical approximations and simulation analysis.
    Bigelow TA; O'Brien WD
    J Acoust Soc Am; 2004 Jul; 116(1):578-93. PubMed ID: 15296018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Review of Quantitative Ultrasound: Envelope Statistics and Backscatter Coefficient Imaging and Contributions to Diagnostic Ultrasound.
    Oelze ML; Mamou J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Feb; 63(2):336-51. PubMed ID: 26761606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature dependent ultrasonic characterization of biological media.
    Ghoshal G; Luchies AC; Blue JP; Oelze ML
    J Acoust Soc Am; 2011 Oct; 130(4):2203-11. PubMed ID: 21973375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.