These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 29716345)

  • 1. Compact high-sensitivity potentiometer for detection of low ion concentrations in liquids.
    Balevicius Z; Lescinskas R; Celiesiute R; Stirke A; Balevicius S; Kersulis S; Bleizgys V; Maciuleviciene R; Ramanavicius A; Zurauskiene N
    Rev Sci Instrum; 2018 Apr; 89(4):044704. PubMed ID: 29716345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electric field-induced effects on yeast cell wall permeabilization.
    Stirke A; Zimkus A; Ramanaviciene A; Balevicius S; Zurauskiene N; Saulis G; Chaustova L; Stankevic V; Ramanavicius A
    Bioelectromagnetics; 2014 Feb; 35(2):136-44. PubMed ID: 24203648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The link between yeast cell wall porosity and plasma membrane permeability after PEF treatment.
    Stirke A; Celiesiute-Germaniene R; Zimkus A; Zurauskiene N; Simonis P; Dervinis A; Ramanavicius A; Balevicius S
    Sci Rep; 2019 Oct; 9(1):14731. PubMed ID: 31611587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of mitochondrial membrane potential using a computerized device with a tetraphenylphosphonium-selective electrode.
    Labajova A; Vojtiskova A; Krivakova P; Kofranek J; Drahota Z; Houstek J
    Anal Biochem; 2006 Jun; 353(1):37-42. PubMed ID: 16643832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extractive liquid-liquid spectrofluorometric determination of trace and ultra concentrations of bromate in water samples by the fluorescence quenching of tetraphenylphosphonium iodide.
    Al-Saidi HM; El-Shahawi MS
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Mar; 138():736-42. PubMed ID: 25544189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct ion speciation analysis with ion-selective membranes operated in a sequential potentiometric/time resolved chronopotentiometric sensing mode.
    Ghahraman Afshar M; Crespo GA; Bakker E
    Anal Chem; 2012 Oct; 84(20):8813-21. PubMed ID: 22994137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On improving the accuracy of instrumented spatial linkage system.
    Liu W; Panjabi MM
    J Biomech; 1996 Oct; 29(10):1383-5. PubMed ID: 8884486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined determination of surface properties of nano-colloidal particles through ion selective electrodes with potentiometer.
    Liu X; Li H; Li R; Tian R; Xu C
    Analyst; 2013 Feb; 138(4):1122-9. PubMed ID: 23249994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Textile-based sampling for potentiometric determination of ions.
    Lisak G; Arnebrant T; Ruzgas T; Bobacka J
    Anal Chim Acta; 2015 Jun; 877():71-9. PubMed ID: 26002212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of binding of tetraphenylborate and tetraphenylphosphonium ions to cyclodextrins studied by capillary electrophoresis.
    Nhujak T; Goodall DM
    Electrophoresis; 2001 Jan; 22(1):117-22. PubMed ID: 11197158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of tetraphenylphosphonium and dodecyltriphenylphosphonium with lipid membranes and mitochondria.
    Trendeleva TA; Rogov AG; Cherepanov DA; Sukhanova EI; Il'yasova TM; Severina II; Zvyagilskaya RA
    Biochemistry (Mosc); 2012 Sep; 77(9):1021-8. PubMed ID: 23157262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interference of calmidazolium with measurement of mitochondrial membrane potential using the tetraphenylphosphonium electrode or the fluorescent probe rhodamine 123.
    Saris NE; Teplova VV; Odinokova IV; Azarashvily TS
    Anal Biochem; 2004 May; 328(2):109-12. PubMed ID: 15113685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photogating of ionic currents across lipid bilayers. Electrostatics of ions and dipoles inside the membrane.
    Mauzerall DC; Drain CM
    Biophys J; 1992 Dec; 63(6):1544-55. PubMed ID: 1489912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Energy-dependent transport of tetraphenylphosphonium ions in Staphylococcus aureus].
    Syrtsov VV; Vinnikov AI
    Ukr Biokhim Zh (1978); 1988; 60(3):98-101. PubMed ID: 3413850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potentiometric sensor for the measurement of Cd2+ transport in yeast and plants.
    Plaza S; Szigeti Z; Geisler M; Martinoia E; Aeschlimann B; Günther D; Pretsch E
    Anal Biochem; 2005 Dec; 347(1):10-6. PubMed ID: 16266684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Absorption-based highly sensitive and reproducible biochemical oxygen demand measurement method for seawater using salt-tolerant yeast Saccharomyces cerevisiae ARIF KD-003.
    Nakamura H; Mogi Y; Hattori H; Kita Y; Hattori D; Yoshimura A; Karube I
    Anal Chim Acta; 2008 Jul; 620(1-2):127-33. PubMed ID: 18558133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimating the binding ability of onium ions with CO₂ and π systems: a computational investigation.
    Hussain MA; Mahadevi AS; Sastry GN
    Phys Chem Chem Phys; 2015 Jan; 17(3):1763-75. PubMed ID: 25461981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Technique of registering active sagittal head movements in the process of studying vertical vestibuloocular reflexes].
    Skliut IA; Likhachev SA; Tarasevich MI
    Aviakosm Ekolog Med; 1999; 33(1):59-61. PubMed ID: 10330577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neutral carrier-based "Ca(2+)-selective" microelectrodes for the measurement of tetraphenylphosphonium.
    Mootha VK; French S; Balaban RS
    Anal Biochem; 1996 May; 236(2):327-30. PubMed ID: 8660512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new potentiometric ammonium electrode for biosensor construction.
    Karakuş E; Pekyardimci S; Kiliç E
    Artif Cells Blood Substit Immobil Biotechnol; 2006; 34(5):523-34. PubMed ID: 16893815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.