BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 29716385)

  • 1. Atmospheric pressure reaction cell for operando sum frequency generation spectroscopy of ultrahigh vacuum grown model catalysts.
    Roiaz M; Pramhaas V; Li X; Rameshan C; Rupprechter G
    Rev Sci Instrum; 2018 Apr; 89(4):045104. PubMed ID: 29716385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface Spectroscopy on UHV-Grown and Technological Ni-ZrO
    Anic K; Wolfbeisser A; Li H; Rameshan C; Föttinger K; Bernardi J; Rupprechter G
    Top Catal; 2016; 59(17):1614-1627. PubMed ID: 28035177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New reactor dedicated to in operando studies of model catalysts by means of surface x-ray diffraction and grazing incidence small angle x-ray scattering.
    Saint-Lager MC; Bailly A; Dolle P; Baudoing-Savois R; Taunier P; Garaudée S; Cuccaro S; Douillet S; Geaymond O; Perroux G; Tissot O; Micha JS; Ulrich O; Rieutord F
    Rev Sci Instrum; 2007 Aug; 78(8):083902. PubMed ID: 17764330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomically-defined model catalysts in ultrahigh vacuum and in liquid electrolytes: particle size-dependent CO adsorption on Pt nanoparticles on ordered Co
    Faisal F; Stumm C; Bertram M; Wähler T; Schuster R; Xiang F; Lytken O; Katsounaros I; Mayrhofer KJJ; Schneider MA; Brummel O; Libuda J
    Phys Chem Chem Phys; 2018 Sep; 20(36):23702-23716. PubMed ID: 30191927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High field electron paramagnetic resonance spectroscopy under ultrahigh vacuum conditions--a multipurpose machine to study paramagnetic species on well defined single crystal surfaces.
    Rocker J; Cornu D; Kieseritzky E; Seiler A; Bondarchuk O; Hänsel-Ziegler W; Risse T; Freund HJ
    Rev Sci Instrum; 2014 Aug; 85(8):083903. PubMed ID: 25173280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined UHV/high-pressure catalysis setup for depth-resolved near-surface spectroscopic characterization and catalytic testing of model catalysts.
    Mayr L; Rameshan R; Klötzer B; Penner S; Rameshan C
    Rev Sci Instrum; 2014 May; 85(5):055104. PubMed ID: 24880412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of complex model electrocatalysts in ultra-high vacuum and transfer into the electrolyte for electrochemical IR spectroscopy and other techniques.
    Faisal F; Bertram M; Stumm C; Waidhas F; Brummel O; Libuda J
    Rev Sci Instrum; 2018 Nov; 89(11):114101. PubMed ID: 30501282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular beam/infrared reflection-absorption spectroscopy apparatus for probing heterogeneously catalyzed reactions on functionalized and nanostructured model surfaces.
    Attia S; Spadafora EJ; Hartmann J; Freund HJ; Schauermann S
    Rev Sci Instrum; 2019 May; 90(5):053903. PubMed ID: 31153295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An improved single crystal adsorption calorimeter for determining gas adsorption and reaction energies on complex model catalysts.
    Fischer-Wolfarth JH; Hartmann J; Farmer JA; Flores-Camacho JM; Campbell CT; Schauermann S; Freund HJ
    Rev Sci Instrum; 2011 Feb; 82(2):024102. PubMed ID: 21361615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A versatile elevated-pressure reactor combined with an ultrahigh vacuum surface setup for efficient testing of model and powder catalysts under clean gas-phase conditions.
    Morfin F; Piccolo L
    Rev Sci Instrum; 2013 Sep; 84(9):094101. PubMed ID: 24089839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compact ultrahigh vacuum/high-pressure system for broadband infrared sum frequency generation vibrational spectroscopy studies.
    Liu S; Liu AA; Zhang R; Ren Z
    Rev Sci Instrum; 2016 Apr; 87(4):044101. PubMed ID: 27131685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel in Situ Techniques for Studies of Model Catalysts.
    Lundgren E; Zhang C; Merte LR; Shipilin M; Blomberg S; Hejral U; Zhou J; Zetterberg J; Gustafson J
    Acc Chem Res; 2017 Sep; 50(9):2326-2333. PubMed ID: 28880530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a reaction cell for in-situ/operando studies of surface of a catalyst under a reaction condition and during catalysis.
    Nguyen L; Tao FF
    Rev Sci Instrum; 2016 Jun; 87(6):064101. PubMed ID: 27370473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon monoxide adsorption and oxidation on monolayer films of cubic platinum nanoparticles investigated by infrared-visible sum frequency generation vibrational spectroscopy.
    Kweskin SJ; Rioux RM; Habas SE; Komvopoulos K; Yang P; Somorjai GA
    J Phys Chem B; 2006 Aug; 110(32):15920-5. PubMed ID: 16898745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interplay between CO Disproportionation and Oxidation: On the Origin of the CO Reaction Onset on Atomic Layer Deposition-Grown Pt/ZrO
    Pramhaas V; Roiaz M; Bosio N; Corva M; Rameshan C; Vesselli E; Grönbeck H; Rupprechter G
    ACS Catal; 2021 Jan; 11(1):208-214. PubMed ID: 33425478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Newly Designed Infrared Reflection Absorption Spectroscopy System for In Situ Characterization from Ultrahigh Vacuum to Ambient Pressure.
    Du Y; Li L; Wang X; Qiu H
    Appl Spectrosc; 2018 Jan; 72(1):122-128. PubMed ID: 29069912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of surface catalyzed reactions; the roles of surface defects, surface diffusion, and hot electrons.
    Somorjai GA; Bratlie KM; Montano MO; Park JY
    J Phys Chem B; 2006 Oct; 110(40):20014-22. PubMed ID: 17020389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An ultrahigh vacuum-compatible reaction cell for model catalysis under atmospheric pressure flow conditions.
    Haunold T; Rameshan C; Bukhtiyarov AV; Rupprechter G
    Rev Sci Instrum; 2020 Dec; 91(12):125101. PubMed ID: 33379966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemistry in ultrahigh vacuum: underpotential deposition of Al on polycrystalline W and Au from room temperature AlCl(3)/1-ethyl-3-methylimidazolium chloride melts.
    Johnston M; Lee JJ; Chottiner GS; Miller B; Tsuda T; Hussey CL; Scherson DA
    J Phys Chem B; 2005 Jun; 109(22):11296-300. PubMed ID: 16852379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of the surface science of catalysis from single crystals to metal nanoparticles under pressure.
    Somorjai GA; Park JY
    J Chem Phys; 2008 May; 128(18):182504. PubMed ID: 18532789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.